

ULT Chemical Engineering

Subjects Modules for S5

Semester 1 Year 3

U.5.1Process & Treatments

Water Treatment Process

Module designation	Process & Treatments
Module level, if applicable	3 rd year of chemical engineering degree
Code, if applicable	U. 5.1
Subtitle, if applicable	-
Courses, if applicable	- Water Treatment Process
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Dorra JALLOULI
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 30 hours of classroom course/semester 9 hours of practical workshop in Lab/semester 12 hours of Project classroom course/semester
Workload	Total 72 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Thermodynamics, Fluid mechanics, Unit Operation, Membrane technology, advanced separation processes, Transfer & transport phenomena.

Module objectives/intended learning outcomes	 Objectives : Study the principles and design of water treatment processes Know the processes for purifying an effluent before it is discharged (urban or industrial discharge). Study different phases of water treatment design Effectively use and optimize an existing installation; in particular, to optimize the water quality obtained and minimize operating costs
	 Learning Outcomes: Students will be able to : Conduct wastewater treatment methods, Characterize water from a chemical and physical point of view. Describe different methods for wastewater treatment and environmental effects of wastewater select technologies that achieve quality objectives at the lowest cost

Content	Part A: Water chemistry
content	1. Classification of water
	2. Mineral composition of the water
	3. Units used in the analysis of the constituents of water
	, 4.water structure
	5. states of water
	6. Physical properties of water
	7. Chemical properties of water
	8. Parameters specific to water chemistry
	9. Water behavior
	10. Water analysis
	Part B: Water treatment techniques
	I- The different types of pollution
	II- General diagram of a wastewater treatment plant
	1- Pretreatment
	2- Primary treatment (physico-chemical)
	3- Secondary (biological) treatment
	4- Tertiary treatment
	5- Reduction of the population of microorganisms
	6- The fate of sludge, recovery, disposal
	Part C : MECHANICAL WATER TREATMENT
	Part D : BIOLOGICAL CLEANING
	Part E : CHEMICAL WASTEWATER TREATMENT
	1. Neutralization,
	2. Disinfection,
	3. Phosphate precipitation,
	4. Nitrogen removal,
	5. Deicing & manganese removal.
	Part F : WATER TREATMENT PROCESSES
	1. Nanofiltration
	2. Reverse osmosis
	3. Coagulation and flocculation
	4. Bioreactors

	Practical workshop in Laboratory- Water treatment (9 hours/ Semester)
	<u>1. Determination of osmotic pressure, water permeability and</u> <u>Verification of Van't Hoff_law</u>
	Objectives : - Determination of osmotic pressure - Determination of the water permeability of the reverse osmosis membrane - Verification of Van't Hoff law
	2. Water treatment by coagulation-flocculation
	<i>Objectives :</i> The aim of this manipulation is to study the influence of the pH and the dose of the coagulant on the efficiency of coagulation- flocculation in water treatment.
	3. Study of the softening, decarbonation and demineralization of
	water by ion exchange resins. Objectives : The objective of this manipulation is to demineralize water by ion exchange resin.
	12 hours of Project workshop/ Semester
	Students are divided into groups of 4 students. A project will be assigned to students group early in the semester. The students will be asked to develop a project plan and will work on project throughout the course. Students groups will work on a given project from the list below
	Projet topic :
	Proposal 1 : Treatment of industrial water loaded with resin residue & emulsions. Identification of pollutants. Identification of a treatment pathway.(PROKIM INDUSTRY).
	Proposal 2 : Improving the performance of the Bonna wastewater treatment plant. (BOONA INDUSTRY).
	Proposal 3: Improuvming of water station treatment: define water quality, determine the necessary equipment, and choose the suitable process. (SITEP company).
	Proposal 4 : study of a hybrid process for the treatment of industrial water. (PROKIM INDUSTRY).
Study and examination requirements and forms of examination	Written Mid-term Exam (20%) + Practical Exam (20%)+Oral Presentation Project (10%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Workshop in Laboratory
	Video projection
	Visit to a municipal wastewater treatment plant (ONAS CHOTRANA, Tunis)

Reading list	Advanced BioTech. Wastewater collection and treatment. www.adbio.com.
	-Agence de l'eau Rhin-Meuse. Les procédés d'épuration des petites collectivités. www.eau-rhin-meuse.fr
	-EU. 5th Commission Summary on the Implementation of the Urban Waste Water Treatment Directive, 2009.
	-André PAULUS. Le filtre planté de roseaux, Editions du Rouergue, 2011.
	- René MOLETTA, La méthanisation. Lavoisier Tec & Doc, 2011 (2ème édition).

U.5.1Process & Treatments

Treatment of Gaseous effluents & Solid Waste

Module designation	Process & Treatments
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.2
Subtitle, if applicable	-
Courses, if applicable	- Treatment of Gaseous effluents & Solid Waste
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Khalil ZAGHDOUDI
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 21 hours of classroom course
Workload	Total 42 hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Thermodynamics, Mass& Energy Balance, units operations, fluid mechanics, Advanced separation processes

Module objectives/intended learning outcomes	 Objectives : 1. Acquire basic knowledge of the treatment processes for aqueous, gaseous and solid industrial effluents 2. Acquire knowledge enabling the design of intrinsically cleaner, more sober and safer processes. 3. Know the different gas treatment processes 4. Choose the most suitable process for the effluent to be
	treated
	Learning Outcomes:
	Students will be able to :
	 choose the treatment process best suited to the nature of the effluent, taking into account the possibilities of discharge or recovery
	 know the measures to be taken at the different stages of the design and during the operation of a process in order to make it cleaner, more sober and safer
	 Explain and propose transformation modes of waste into products, by-products and have the knowledge of treatments techniques,
	 Characterize the operation of processing units: mass and energy balances

Content	Chapter I- Gas effluent treatment
	1. Sustainable development
	2. Integrated Production-Clean and Safe Processes
	3. Regulations and Standards
	4. Upstream processing
	5. Air treatment processes
	6. Characterization of gaseous effluents
	7. Selection criteria
	8. Treatment processes: by incineration, catalytic,
	biological treatment, by adsorption, by absorption,
	condensation.
	9. Treatment of Volatile Organic Compounds (VOCs)
	10. Acid Gas Treatment
	11. CO ₂ treatment
	Chapter II- ADSORPTION GAZ/SOLIDE
	1. Processes for the treatment of gaseous effluents by
	gas/liquid absorption with and without reaction, by dust
	removal and by adsorption
	2. Overview of adsorption
	3. Adsorption kinetics
	4. Adsorption equilibrium
	5. Multicomponent Adsorption
	6. Implementation
	Chapter III- DUSTING
	1. Introduction
	2. Particulate Reminders
	3. Mechanical separators
	4. Hydraulic separators
	5. Filter media separators
	6. Electric separators
	Chapter III : GAS/LIQUID ABSORPTION
	1. Introduction
	2. physical absorption
	3. Absorption with chemical reactions: irreversible reaction
	order 1.1 then order m,n
	4. Transfer in the presence of gas phase resistance
9	Transfer in the presence of a complex reaction system

Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Final Exam (60%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection
Reading list	Waste Gas Treatment for Resource Recovery.P Lens, C Kennes, P Le Cloirec, M Deshusses.ISBN13:9781843391272.(2014).
	E. Guyon, J. P. Hulin, and L. Petit. Hydrodynamique physique. EDP Sciences/CNRS Editions, 2001

U.5.2Environment & Plant Engineering

Environment & Renewable Energy

Module designation	Environment & Plant Engineering
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.1
Subtitle, if applicable	-
Courses, if applicable	- Environment & Renewable Energy
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Nizar SOMRANI
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 21 hours of classroom course
Workload	Total 42 hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Thermodynamics, Mass & Energy Balance, Applied thermodynamic, Fluid mechanic, heat transfer, mass transfer

Module objectives/intended	Objectives :
learning outcomes	1. Describe basic energy concepts
	2. Understand the different processes for transforming
	primary renewable energy (solar, wind, hydro,
	geothermal, and biomass) into other secondary forms
	such electricity
	3. Understand the different types of storage and their roles with renewable energies
	Learning Outcomes:
	Students will be able to :
	1. Reflect and evaluate the environmental impact of
	energy production and the relationship between energy
	production, consumption and climate change
	2. Design the parameters of a consumer scale stand alone
	and grid connected photovoltaic system for a given site location and performance specification.
	3. Optimize the means of electricity production according
	to the climatic conditions of the site
	4. Calculate the major parameters of sun movement, solar
	radiation, and tracking systems.
	5. Calculate wind turbine performance parameters
	(efficiency, energy produced, capacity factor) for a turbine
	with given power curve and for a given location with given
	wind speed distribution function.
	6. Recover organic waste

Content	Classroom Lecture and Guide Work
	Chapter 1: General information on the different types and uses
	of renewable energies: (1 session)
	1. Presentation of the different forms of energy
	2. Energy sources
	3. Conversion of primary energies
	4. Global energy context
	5. Environmental impact
	6. Applications of renewable energies
	7. Different renewable energy systems
	Chapter 2: Photovoltaic solar (3 sessions + 2 Application
	sessions)
	1. Solar energy
	 Operation of a photovoltaic system Production process of a cell
	4. Different photovoltaic systems and applications
	5. Norms and standards
	6. Sizing of a PV system (autonomous or connected to the grid)
	Chapter 3: Concentrated solar (1 session)
	Objective: explain the difference between PV power plants and
	solar concentrators
	Chapter 4: Wind energy (2 sessions + Application)
	Chapter 5: Waste recovery (2 sessions + Application)
	1. Production of biogas from organic waste
	2. Production of electricity from waste
	3. Different application and environmental impact
	Chapter 6: The different forms of energy storage (Pumped
	Energy Transfer Station and storage with molten salt) (1
	sessions + tutorials)
	During this course we explain how the Pumped Energy Transfer
	Station works, so the hydraulic system will be studied
Study and examination	Format: Written Mid-term Exam (40%) + Final Exam (60%)
requirements and forms of	
examination	
Media employed	Course Material (Hard/ Soft copy) for classroom & Online
	(Moodle ULT)
	Video projection
Reading list	Books and handouts, websites, scientific papers

U.5.2 Environment & Plant Engineering

Bioresources recovery

Module designation	Environment & Plant Engineering
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.2
Subtitle, if applicable	-
Courses, if applicable	- Bioresources recovery
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Feriel REZOUGA
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 9 hours of classroom course 12 hours Project
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Thermodynamics, Mass& Energy Balance, industrial heterogenous catalysis, Boprocess engineering, chemical

Module objectives/intended learning outcomes	Objectives :
	 Presentation of tools for designing and implementing industrial processes that meet the challenges of sustainable development. Assess the benefits, opportunities, and challenges of bioresources in today's economy Understand the variety of technologies currently employed and under development for production of bioenergy and bioproducts from biomass and algae Comprehend the life cycle of products derived from
	bioresources and the green supply chain
	Learning Outcomes:
	Students will be able to :
	 Use of renewable materials from biomass, improvement of the eco-compatibility of processes.
	 Development of industrial synthesis strategies taking into account all sustainability criteria.
	 Develop critical thinking about the socio-economic aspects of the bioeconomy

Content	Classroom Lecture and Guide Work
	Section 1 (9 hours of contact classroom course/Semester)
	 Chapter 1: Presentation of the notions of plant chemistry Chapter 2: Plant chemistry and concepts ranging from biomass to biomaterials via platform molecules 1. Biomass, 2. Biofuels, 3. Lignocellulose pre-treatments, 4. Biosourced platform molecules, 5. Other biosourced molecules of interest, 6. Biomaterials. Chapter 3: Bioenergy recovery 1. Conversion technology: bio-ethanol 2. Enhancement on bioenergy recovery from crop residue by using hydrothermal pretreatment 3. Conversion technology: bio-gasification 4. Conversion technology: Bio-Diesel 5. Hydrolysis. Biomass conversion: Biochemical conversion 6. Anaerobic digestion (biogas production from organic waste and wastewater). 7. Algal biofuels(Growth/harvest rates, transesterification) Section 2 (12h of classroom Project workshop /Semester) Students are divided into groups of 4 students. A project will be assigned to students group early in the semester. The students will be asked to develop a project plan and will work on project throughout the course. Students groups will work on a given project from the list below Project topic : Proposal 1 : -Anaerobic digestion of carbon rich sewage sludge for methane production Proposal 2 : -Production of acetic acid by fermentation of fruit cannery waste
	 Production of acetic acid by fermentation of fruit cannery waste with acetic bacteria Proposal 3: Production of xanthan gum by microbial biosynthesis (reactor) on molasses.
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (30%) + Oral Presentation (20%) Project+ Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection

Reading list	Books and handouts, websites, scientific papers
Reduing list	Books and handouts, websites, scientific papers
	-Chimie verte, chimie durable, Sylvain Antoniotti, Ellipse, 2013
	-Génie des procédés durables, M. Poux, P. Cognet, et Ch. Gourdon, Dunod, 2010
	-Introduction to Biomass Energy conversions, Sergio Capareda, CRC Press, 2013
	-Biofuels and Bioenergy, Processes and Technologies, Sunggyu Lee, T.Y Shah, CRC Press, 2012.
	-Sustainability through biobased Chemistry, R. Chapas, CRC Press, 2017.
	- Biomass for renewable energy, fuels, and chemicals. D.L. Klass, Academic Press, http://www.sciencedirect.com/science/book/9780124109506
	- Algae for Biofuels and Energy, M.A. Borowitzka, N.R. Moheimani,http://www.springer.com/br/book/9789400754782.

.5.2 Environment & Plant Engineering

Process Plant Engineering

Module designation	Environment & Plant Engineering
Module level, if applicable	3 nd year of chemical engineering
Code, if applicable	U.5.3
Subtitle, if applicable	-
Courses, if applicable	- Process Plant Engineering
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Hatem HOUCINE
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 21 hours of classroom course
Workload	Total 42 hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Fluid mechanic, thermodynamic, operations units, Applied Process optimization, Mass & Energy Balance, Applied heat transfer, Applied thermodynamic, Simulation ASPEN
Module objectives/intended learning outcomes	 Objectives : Knowledge of process utilities such as demineralization of water, steam generation, steam distribution and cooling water, which is essentially required for working in any chemical or related industry. Gain Knowledge about differents problems encountred during chemical process. Learning Outcomes: Calculate the requirements of water and air and their applications as utilities calculate the steam requirement and its applications as utility Evaluate and apply the various risk assessment methods in industries.

Content	Classroom Lecture and Guide Work
content	I. Water process utilities
	1. Source of water
	2. water Impurities
	3. Tomporary hardness/ Permanent Hardness
	4. Estimation of hardness by EDTA Method
	5. Water boilers problems
	6. Scale and sludge
	7. Zeolit Process
	8. Lime Soda process
	9. Ion exchage process
	10. Mixed bed deionezer Process
	II. Steam, Steam generation and steam distrubution
	 Formation of steam at a constant pressure from water.
	 Temperature vs total heat graph during steam formation
	3. Important terms for steam
	 Enthalpy – Entropy (h-s) diagram for water and steam
	or Mollier Chart
	5. Different types of boilers
	III. Refractories
	1. Definition, classification, properties, characteristics
	2. General method of manufacturing of refractories
	3. Failure of refractories
	IV. Insulation
	1. Characteristics, properties, classification
	V. Refrigerants and Cooling Water
	VI. Introduction, classification of refrigerants
	1. Important refrigerants
	2. Selection of refrigerants
	3. Construction and working of cooling towers
Study and examination requirements and forms of	Format: Written Mid-term Exam (40%) + Final Exam (60%)
examination	
Media employed	Course Material (Hard/ Soft copy) for classroom & Online
	(Moodle ULT)
	Video projection
Reading list	-Vasandhani, V. P., and Kumar, D. S, Heat Engineering,
	Metropolitan Book Co. Pvt. Ltd. (2009).
	-Crowl, D.A. and Louvar, J.F., Chemical Process Safety-
	Fundamentals with Applications, Prentice Hall, (2002).
	- Sanders, R. E. Chemical Process Safety-Learning from Case
	Histories, Oxford (2005).
	-Chemical Plant Utilities. Sathiyamoorthy Manickkam .Lambert
	Academic PublishingISBN: 978-3-659-97828-9 (2016).
	- Plant Utilities by Dr. Mujawar, Nirali Prakashan Publication.

U.5.3 Industrial Manufacturing

Industrial process under high pressure

Module designation	Industrial Manufacturing
Module level, if applicable	3 nd year of chemical engineering
Code, if applicable	U.5.3
Subtitle, if applicable	-
Courses, if applicable	- Industrial process under high pressure
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Khalil ZAGHDOUDI
Language	English
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 42 hours of classroom course
Workload	Total 63 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Fluids mechanic, thermodynamic, Advanded separation process, Applied Process optimization, Mass & Energy Balance, Applied heat transfer, Applied thermodynamic, physical chemistry. Chemical reactors. Industrial heterogenous catalysis.
Module objectives/intended learning outcomes	 Objectives : Describe the thermodynamic fundamentals ofseparation processes with supercritical fluids Discuss parameters for processes optimization with supercritical fluids. Describe the thermodynamic fundamentals of separation processes with supercritical fluids Learning Outcomes: Students will be able to : Understand of the influences of pressure on properties of compounds, phase equilibria Apply high pressure concept in the complex process design. Discuss parameters for optimization of processes with supercritical fluids.

Content	Classroom Lecture and Guide Work-Industrial process
	under high pressure
	Chapter I : Introuction
	1. Influence of pressure on fluids propreties
	2. Influence of pressure on heterogeneous equilibria
	3. Influence of pressure on transport processes
	Chapter II: Process under high pressure
	1. Absorption
	2. Pressure swing adsorption
	3. Air distillation
	4. Gases liquifaction
	Chapter III: Supercritical state
	1. Phase diagram of a pure substance
	2. Density around the critical point
	3. Influence of temperature on solubility
	4. Main supercritical fluids
	5. Supercritical fluids propreties
	Chapter IV: Supercritical fluids as solvents
	 Cleaning & purification Supercritical fluids in reacting systems
	3. Gas extraction
	4. Imprenation
	5. Formulation
	6. Dyeing
	7. Reaction at high pressure
	Chapter V: Industrial Processes
	1. Hydrations Reaction
	2. Oxidation Reaction,
	 Supercritical water oxidation (SCWO)
	4. Haber-Bosch-Process,
	5. Polymerizations Reaction ;
	6. Methanol-synthesis
	7. Pyrolysis,
	8. Hydrocracking;
	9. Wet air
	10. Linde Process,
	11. De-Caffeination Process,
	12. Petrol and Bio-Refinery Processes
	13. Biofuel and Biodiesel Production under high pressure
	14. Enzyme Catalysis
	15. Feeding and removal of solids, transport within the reactor
	16. Materialsprocessingusingsupercriticalfluids
	Chapter VI :Supercritical Fluids Extraction (SFE)
	1. Advantages and disadvantages
	2. Implementation of supercritical extraction Process
	3. Treatment of solid matrices
	4. Liquid mixtures
	5. Energy aspects of the semi-batch extraction process
	6. Choice of operating conditions for extraction
	7. Solubility in supercritical CO ₂
	8. Use of co-solvents
	9. Industrial applications

Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Final Exam (60%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection
Reading list	- G. Brunner: Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes.
	Steinkopff, Darmstadt, Springer, New York, 1994.
	- Industrial High Pressure Applications: Processes, Equipment, and Safety.Rudolf Eggers.ISBN: 978-3-527-32586-3. (2012)
	- High Pressure Process Technology: Fundamentals and Applications.A. Bertucco, G. Vetter . Volume 9, ScienceDirect. (2001).
	- High-Pressure Processing: Fundamentals, Misconceptions, and Advances. (2019). DOI: 10.1016/B978-0-08-100596-5.22949-1.
	-Industrial High Pressure Processing of Foods: Review of Evolution and Emerging Trends. (2012). DOI: 10.17265/2159-5828/2012.10.001.
	-Present and Future of High Pressure Processing.Francisco Barba, Carole Tonello-Samson, Eduardo Puértolas, María Lavilla. (2020). ISBN: 9780128164051.
	- Hydrothermal and Supercritical Water Processes. (2014). Gerd Brunner. Volume 5. SienceDirect.
	- Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds. Jose L. Martinez. (2008). ISBN 9780367577629.

U.5.3 Industrial Manufacturing

Risk Analysis & Process Safety

Module designation	Industrial Manufacturing
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.3
Subtitle, if applicable	-
Courses, if applicable	- Risk Analysis & Process Safety
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Mounir MANSOUR
Language	French
Relation to curriculum	Professional module (compulsory), (S1)
Type of teaching, contact hours	Lecture, 27 hours of classroom course/semester 15 hours of project workshop/semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Chemical reaction, mathematics, Kinetics reaction, Thermodynamics, Heat transfer, applied statistics, Chemical Reactors, Control & Regulation, mass transfer, ASPEN, HYSYS.

Module objectives/intended	Objectives :
learning outcomes	 Be able to perform a risk analysis on a complex industrial system
	 To sensitize students to the concepts of thermal stability of substances, thermal runaway, operating conditions (real-time simulation) and process safety (risk analysis methods).
	 Know how to simulate an industrial process on a large real-time software (Aspen plus, Aspen Hysys dynamic) in order to predict any process drifts
	Learning Outcomes:
	Students will be able to :
	 Identify and quantify different types of risks presented by a chemical process,
	2. Know about different risk analysis methods,
	 Acquire a methodology to understand risk analysis on an industrial scale,
	 Know how to make a chemical process safe by validating its operational integrity (start-up, steady state, shutdown of the installation) using hazard analysis methods (HAZOP method, cause tree, butterfly knot).
	5. Be able to implement environmental management

Content	Classroom Lecture and Guide Work
content	Section 1 (27 hours of contact classroom course/ Semester)
	Chapter I: Introduction
	1: The Bhopal case
	1-1: the ecosystem of a chemical industry
	1-2: the legal framework of a chemical industry
	1-3: the ethical framework of the profession of
	chemical engineer
	2: General and specific objectives of the course
	Chapter II: the basics of thermal safety
	1: Reminders on thermochemistry, kinetics and heat transfer
	2: The Power of a Chemical Reaction
	3: The cooling power of a reactor
	3: Energy balance on a reactor
	Chapter III: thermal runaway
	1: Semenov diagram
	2: Parametric sensitivity
	3: Evolution of pressure under adiabatic conditions
	4: Giygas' scenario
	5: Severity assessment
	6: Probability assessment
	7: The criticality of a process
	Chapter IV: The risk of gas phase explosion
	1: Characteristics of flammable gas mixtures
	1-1: Flammability and fire triangle
	1- 2: Explosive limits of a gas
	1- 3: Explosive limits of a mixture of fuel gases1- 4: Estimation of the CMO
	1- 5: Effect of temperature and pressure
	2: Characteristics and effects of an explosion
	2- 1: Modes of explosion propagation
	2- 2: Characteristic quantities of an explosion
	2- 3: Factors influencing the regime and the violence of
	an explosion
	2- 4: Calculation of damage by the TNT equivalent
	method
	3: Prevention by action on flammable gases and vapours
	3-1: Ventilation
	3- 2: Inerting
	3- 3: Inerting-ventilation
	Chapter V: Risk analysis methods
	1: The fault tree
	2: The LOPA Method
	3: The HAZOP
	Section 2 : Project (15 hours of classroom
	workshop/Semester)
	Students are divided into groups of 4 students. A project will be
	assigned to students group early in the semester. The students
	will be asked to develop a project plan and will work on project
	throughout the course. Students groups will work on a given project from the list below.
	Students groups will work on a given project from the list below

	Project topic:Proposal 1 :Distillation column quantitative risk assessment.Proposal 2 :Hazopstudyof a fixedbedreactorfor MTBE synthesisProposal 3 :Dustexplosionassessmentwithin a pharmaceutical industryProposal 4 :
	Safety level optimization in an oil refinery laboratory
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Oral presentation Project (10%)+Final Exam (60%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection
Reading list	1- Control and monitoring of chemical batch reactors, Caccavale, Fabrizio, New York, 2011,
	2- Guidelines for hazard evaluation procedures, Hoboken, N.J. : Wiley-Interscience, c2008,
	3- Guidelines for pressure relief and effluent handling systems, New York, N.Y. : The Institute.

U.5.3 Industrial Manufacturing

Safety Modelling

Module designation	Industrial Manufacturing & Safety
Module level, if applicable	3 nd year of chemical engineering
Code, if applicable	U.3.3
Subtitle, if applicable	-
Courses, if applicable	- Safety Modelling
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil Zaghdoudi
Lecturer	Mr. Baha EDDINE GHARBI
Language	English
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	21 hours practical workshop/ Semester and 21 hours of Project.
Workload	Total 77 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommendedprerequisites	Thermodynamic, Fluid mechanics, Applied thermodynamic, Chemical Engineering operations. Chemical engineering reaction
Module objectives/intended learning outcomes	 Objectives: Introduce PHAST and SAFETI software to students Understand the modelling techniques used Learning Outcomes: Use PHAST and SAFETI modulization Tools, Use PHAST and SAFETI modulization Tools, Modelling the consequence with PHAST DNV Modelling the frequency with SAFETI DNV/ Reliability Workbench Calculate the individual and societal risk with SAFETI DNV.

Content	Section 1: 21 hours of Workshop on PHAST DNV and SAFETI DNV
	in Laboratory:
	Exercise 1: General introduction
	I.1 Introduction to PHAST and SAFETI DNV software
	I.2 The main characteristics of PHAST and SAFETI DNV
	I.3 Comparison between PHAST DNV and SAFETI DNV
	I.4 Defining the basic Key word in safety process
	I.5 Modeling different consequence with PHAST DNV
	I.6 Modeling different Frequency with SAFETI DNV / Reliability
	Workbench
	Exercise 2: Hazard identification
	II.1 General
	II.2Preliminary Hazard Analysis (PHA)
	II.3 Hazard and Operability study (HAZOP)
	II.4Hazard Identification study (HAZID)
	Exercise 3: Consequence modelling
	III.1 Flash fire
	III.2 Jet fire
	III.3 Pool fire
	III.4 Vapor cloud explosion
	III.5 Flammablegas dispersion
	Exercise 4: Frequency analysis
	IV.1 General
	IV.2 Calculate leak frequency: (Part count Method)
	IV.3 Modeling the frequency and identify the possible outcome
	and probability: (Event trees analysis). Exercise 5: Risk determination
	V.1 General
	V.2 Applications
	V.2.1 Determine the individual risk
	V.2.1.1Determine the Location Specific Individual Risk(LSIR)
	V.2.1.2Modeling the Location Specific Individual Risk (LSIR)
	V.2.1.3 Calculate the Individual Risk Per Annum (IRPA)
	V.2.2Determine the societal risk
	V.2.2.1 Determine the Potential Loss of Life (PLL)
	V.2.2.2 Determine the F/N curve
	Section 2 : 21 hours of workshop project in laboratory/Semester
	Students are divided into groups of 3 students. A project will be
	assigned to each students group early in the semester. The
	students will be asked to develop a project plan and will work on
	project throughout the course.
	Students groups will work on a given project from the list below
	Project Topic :
	Proposal 1:
	Quantitative Risk Assessment (QRA) of EL BORMA natural gas
	receiving facility: Hazard identification, consequence modelling,
	frequency analysis and risk determination & assessment of the
	processing plant.
	Proposal 2 :
	Economic Optimizationof an industrial Security System of
	benzene Separation in a petroleum fraction.

	Proposal 3 : Safety Hazards Associated with Oil and Gas Extraction Activities. Hazard identification, consequence modelling, frequencyanalysis and risk determination & assessment of the processing plant.
	Proposal 4 : Installation of a firefighting unit in DJBEL GROUZ CPF: Plant sitting, water and foam requirements calculation, firefighting network hydraulic simulation, equipment sizing and economic analysis of the firefighting unit. Proposal 5 : Design of Safety System and Management in Petrochemical Industry
Study and examination requirements and forms of examination	Format: Written Manuscript (30%) + Oral Presentation Project (70%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection
	Practical Work on PHAST DNV, SAFETI DNV software in Laboratory
	Industrial Visit to Tunisian Society of Refining Industries (STIR).
Reading list	 https://www.dnv.com/software/services/phast/index.html https://www.dnv.com/software/products/phast-safeti- products.html

Elective Unit

U.5.4 Medicinal Chemistry (Elective UNIT 1)

Innovative Trends in Formulation

Module designation	Industrial Manufacturing
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.4
Subtitle, if applicable	-
Courses, if applicable	- Innovative Trends in Formulation
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Ghazi TABKA
Language	French
Relation to curriculum	Professional module (elective),
Type of teaching, contact hours	Lecture, 36 hours of classroom course/ Semester 6 hours of Practical Workshop in Lab/ semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Physical chemistry, unit Operations, Fine chemistry, pharmacology, kinetics reaction.
Module objectives/intended learning outcomes	 Objectives : Train the students with respect to basics of monophasics, biphasics, topical formulation, aerosols, Explain principles of preformulations and basic formulation considerations formonophasic liquid orals and emulsions suspensions, suppositories and aerosols Learning Outcomes: Describe unit operations, large scale manufacturing and layout for monophasic, biphasics, semisolids, suppositories and aerosols Conceptualize and develop monophasic liquid oral and topical formulations.

Contont	Classroom Lecture and Guide Work
Content	Chapter I : I. FUNDAMENTAL ASPECTS OF DRUGS
	1. Classification of Drugs
	2. Nomenclature of Drugs
	3. Rules of Drug Nomenclature
	Chapter II : Solubilization techniques
	Chapter III : Monophasics
	1. Preformulation
	2. Formulation
	3. Quality Control
	4. Layout design and unit operations
	Chapter IV : Biphasic – Suspensions& Biphasic – Emulsions
	1. Preformulation
	2. Technical Principles and Stabilization
	3. Formulation Development
	4. Evaluation
	5. Large scale manufacturing and packaging with focus on
	equipment
	6. Layout design and unit operations
	Chapter VI : Ointments
	1. Preformulation
	2. Formulation
	3. Evaluation
	 Lvaluation Large scale manufacture and packaging with focus
	onequipment 5. Layout design and Unit operations
	Chapter VI : Gels & Suppositories
	1. Preformulation
	2. Formulation
	3. Evaluation
	4. Large scale manufacture and packaging with focus
	onequipment
	5. Layout design and Unit operations
	Chapter VII: Aerosols
	1. Containers and Propellents
	2. Formulation of aerosols
	3. Evaluation of aerosols
	<u>6 hours of Practical Workshop in Laboratory- New trends in</u>
	Formulation
	1. Capsules: Formulation and manufacture and control of
	paracetamol capsules
	2. Emulsion: Formulation of an oil/water emulsion through
	the determination of the critical HLB
Study and examination	Written Mid-term Exam (25%) + Practical Exam (25%) + Written
requirements and forms of	Final Exam (50%)
examination	
Media employed	Course Material (Hard/ Soft copy) for classroom & Online
	(Moodle ULT)
	Video projection
	Practical Workshop in Laboratory

Reading list	-Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical by Charles Owens Wilson, John H. Block, Ole Gisvold, John Marlowe Beale.
	-The Organic Chemistry of Drug Design and Drug Action by Silverman R. B., 2nd Edn. Academic Press. 2012.
	-Pharmacologie (2ème édition), M. Moulin et A. Coquerel. MASSON.
	-Advanced Practical Medicinal Chemistry, Ashutosh Kar, New Age International Ltd. (2004).
	-Foye's Principles of Medicinal Chemistry by David A. Williams, Thomas L. Lemke, William O. Foye (2008), Kluwer publication.
	-Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21 st edition,2006, Lippincott Williams & Wilkins

U.5.4 Medicinal Chemistry (Elective UNIT 1)

Module designation	Medicinal Chemistry
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.4
Subtitle, if applicable	-
Courses, if applicable	- Pharmaceutical Standards Protocols
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd.
Language	French
Relation to curriculum	Professional module (elective),
Type of teaching, contact hours	Lecture, 42 hours of classroom course/ Semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	-

Module objectives/intended	Objectives :
learning outcomes	 Acquire the knowledge regarding the regulatory aspects in the pharmaceutical industries.
	 Know the different competent regulatory authorities globally.
	 Students will explore the global regulatory environment and learn about the importance of international standards and harmonized guidelines in the
	pharmaceutical and medical device sectors 4. Have an idea on regulatory guidelines and directions
	framed by the regulatory authorities will be helpful to place the drug products in market for marketing approvals.
	Learning Outcomes:
	Students will be able to :
	 Understand current issues in the regulatory affairs world from industry-based regulatory affairs professionals and representatives of patienal regulatory bodies
	national regulatory bodies. 2. Describe the global regulatory landscape for medicinal products (pharmaceuticals, biologics and medical devices).
	3. Outline the key regulatory documentation required for successful marketing authorizations

I

Content	Classroom Lecture and Guide Work
Content	1. Introduction
	2. International regulatory trends in pharmaceutical
	industry.
	3. Role of regulatory affairs department in pharmaceutical
	organization
	-Regulatory audits,
	-Interactions with various other departments,
	 Single point contact with regulatory agencies
	4. Types of regulatory filings for pharmaceutical products
	5. Good Manufacturing Practices (GMP)
	- Tunisia GMP Certification, WHO GMP Certification
	- ICH guidelines for stability testing and other relevant
	ones (Q1-Q10).
	-Quality Assurance and Quality Control – Basic
	understanding for in-built quality.
	6. Documentation- Protocols, Forms and Maintenance of
	records in Pharmaceutical industry.
	7. Governing Regulatory Bodies.
	- U.S Food & Drug Administration USDMF
	- Canada Therapeutic Product Directorate DMF
	- European Medicines Agency (EMEA/ National Authorities) EDMF
	- European Directorate for Quality of Medicines
	CEP/COS & Health Care Products.
	- MHRA – Medicines and Health Care Products
	Regulatory Agency
	8. Registration of medicinal products for human use
	- Registration procedure
	- Composition of the registration dossier
	- Timelines for answering
	- Request for appeal
	- Marketing authorizationwithdrawal
	9. Processing and its application, Intellectual Property
	Rights (Patent, Copyright and Trademarks).
Study and examination	Format: Written Mid-term Exam (40%) + Written Final Exam
requirements and forms of	(60%)
examination	
Media employed	Course Material (Hard/ Soft copy) for classroom & Online
	(Moodle ULT)
	Video projection

Reading list	-Guidelines for Developing National Drug Policies; WHO Publications.
	- ICH guideline Q12 on technical and regulatory considerations for pharmaceutical product lifecycle management. (2020EMA/CHMP/ICH/804273/2017. Committee for Medicinal Products for Human Use.
	- Pharmacy and Drug Directorate - Ministry Of Health - Tunisia. MEDICINAL PRODUCTS REGISTRATION GUIDE IN TUNISIA. (2016).
	- Quality assurance of pharmaceuticals. Good manufacturing practices and inspection. Volume 2. I SBN 978 92 4 154708 6.
	- Official website of european medicine agency. https://www.ema.europa.eu/en.
	- Official website of Medicines and Health Care Products Regulatory
	Agency.https://www.gov.uk/government/organisations/medicin es-and-healthcare-products-regulatory-agency.

U.5.4 Medicinal Chemistry (Elective UNIT 1)

Project (Pharmaceutical product design)

Module designation	-Medicinal Chemistry
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.5.4
Subtitle, if applicable	-
Courses, if applicable	- Project (Pharmaceutical product design)
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Khalil ZAGHDOUDI
Language	French
Relation to curriculum	Professional module (Elective),
Type of teaching, contact hours	21 hours of Practical Project /semester
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Organic Chemistry & Catalysis, Structural Organic Chemistry, Structural & Metabolic Biochemistry, Fine chemistry, Chromathographic separation process, Pharmacology.
Module objectives/intended learning outcomes	 Objectives : Concept of rational drug design To familiarize future engineers with the methods of analyzing and design of drugs. Have knowledge on purification and analysis techniques of active compunds. Learning Outcomes: Propose a chemical mechanism of a pharmaceutical active compound synthesis Analytical validation and purification of obtained product.

Content	
	21 hours of Project workshop/Semester The purpose of these projects is to continue learning project management and teamwork through the development of a technological innovation project. By technological project, we mean a study intended to develop an idea initiated by a "customer= Supervisor". This must proceed from an innovation process aimed at creating "a new product, a new service, a new good.
	Students are divided into groups of 3 to 4 students. They ar confronted with real professional and managerial situations,. Students groups will work on a given project during the semester in order to carry on an innovative process from the beginning to the end.
	Project Topic
	Proposal 1 :
	Choice of physicochemical identification tests according to the structure, Chemical identification reactions (functional groups etc.) Development of a dosage protocol Determination of active substance content for theophylline-Ethylenediamine. Proposal 2 :
	Implementation of comparative assay methods from different pharmacopoeias (European, USP) applied to the control of beta lactam. Establishment of a dosing protocol for the active substance by the students. Dosage of water in drugs.
	Proposal 3: Thin Layer Chromatography Technique an Purification of commercially available drugs/Synthesize Compounds by Column Chromatography.
	Proposal 4: Preparation of Acid / Basic Salts of Drugs an Evaluation of their Physicochemical Properties. (Benzilic Acid Sodium Benzoate)
	Proposal 5: Synthesis & Purification of Benzimidazole.
	Proposal 6: Synthesis of Anthranilic Acid. Proposal 7: Synthesis of Sulfanilamide.
	Project Working Steps:
	1. Search for documentation sources - Study of the
	state of the art and analysis of resources (patents, publications, internet)
	2.Writing
	3. Use of process simulation software
	4. Teamwork awareness
	5. Design Product/Protocol
	6.Propose and find scientific several way of designing a pharmaceutical product.
Study and examination requirements and forms of	Format: Oral Presentation (50%) + Redaction of manuscript (50%)

Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection Practices on ChemDraw software, oral presentation
Reading list	Books and handouts, websites, https://www.perkinelmer.com/fr/category/chemdraw ChemDraw Tutorials Documents & Video

U.5.4Material Sciences (Elective UNIT 2)

Processing on Polymers & Composites

Module designation	Industrial Manufacturing
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.4
Subtitle, if applicable	-
Courses, if applicable	- Processing on Polymers & Composites
Semester (s) in which the module is taught	-Semester 1 (S1)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Pr. Mohamed JAZIRI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 36 hours of classroom course/ Semester 6 hours of Practical Workshop in Lab/ semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Organic chemistry, Polymers synthesis, thermodynamics, Fluid mechanics, Physical chemistry of polymers.
Module objectives/intended learning outcomes	 Objectives : 1. Impart an understanding of the manufacturing science and engineering of polymers and polymer composites 2. Classification of engineering materials and processing techniques, the structure and mechanical properties of plastics, thermoplastics and thermosets, the various processing techniques of polymers. Learning Outcomes:
	Students will be able to :
	 Differentiate between polymer processes Formulate composites Show the particularities of shaping polymers and composites Choose the methods of characterization by light scattering and by microscopy. Make the link between certain usage properties, the formulation and operating conditions of the production process

Content	Chapter I. Characterization of polymers in the molten state Chapter II. Thermomechanical characterization of polymer and composite materials in the solid state 1. Dynamic Mechanical Analysis (DMA) 2. Thermal Mechanical Analysis (TMA) 3. Differential Scanning Calorimetry (DSC) 4. Determination of the VICAT and HDT point 5. Fourier transform infrared 1600 6. Shore A and D hardness 7. Plastics traction machine 8. KINEMAT torque follower 9. TROMBOMA viscosity tracker Chapter III. Polymer and composite implementation 1. UV aging enclosure 2. Inflating extrusion line
	 3. Compounding line 4. Composite press 5. 60 ton injection Molding machine 6. Billion bi-material injection Molding machine Chapter IV. Optical properties of polymer materials 1. CR 30 colorimeter 2. Laboratory press 3. Reflectometer
	Practical workshop in Laboratory -Processing of polymers and composites (6 hours of practical workshop in laboratory) Analysis and test on a plastic material. Determination of tensile properties
	Objectives : Understand the general principles for determining the tensile properties of plastics under defined conditions. Tensile testing is used to study the tensile behavior of test specimens and for the determination of tensile strength, tensile modulus and other aspects of stress / tensile strain relationships under defined conditions.(Chemistry Technical Center: CTC Laboratory)
Study and examination requirements and forms of examination	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection Practical Workshop Industrial Visit (Solution Composite Industry)

L

Reading list	-Plastic Materials and Processing: A. Brent Strong, Prentice Hall, ISBN 0-13-021626-7.
	-Handbook of Composites: S.T. Peters, ISBN 978-1-4615-6389-1.
	-https://www.worldoftest.com/hdtvicat-heat-deflection-testers.
	-Carbon ContainingPolymerComposites. Springer Link. (2019).ISBN: 978-981-13-2688-2.
	 Composite Materials: Engineering and Science: F.L. Mathews and R.D. Rawlings, CRC press, 084930251X
	- Brydson J.A., "Plastic Materials", Elsevier 8th Edition. (2016).
	- Polymer Processing: Principles and Design, 2nd Edition by Donald G. Baird, Dimitris I. Collias, Wiley-Interscience. (2014).

U.5.4 Material Sciences (Elective UNIT 2)

Molding and design

Material Sciences
3 rd year of chemical engineering
U. 5.4
-
- Molding and design
-Semester 1 (S5)
Dr Khalil ZAGHDOUDI
Pr. Mohamed JAZIRI
French
Professional module (Elective),
Lecture, 42 hours of classroom course/semester
Total 77 hours/semester (35 hours of Self-Study/semester)
3 credits
 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Material sciences, polymers & composites, physical chemistry, solid chemistry. Micro- and nanostructured products. Chemical engineering Reaction.

Module objectives/intended	Objectives :
learning outcomes	 Knowledge of general mold design, cavity feeding patterns and cooling function in the molding cycle. Understand the problem of plastic shrinkage and its influence on the quality of the items to be produced Technical and economic control of the various molding processes.
	Learning Outcomes:
	Students will be able to :
	 Ability to understand the processing techniques Ability to design a mold for a product Ability to understand the importance of mold in product development. Approach the thermal phenomena that condition the cycle time, the operating cost and the profitability of the molding process. Approach the modeling of flows relating to the molding of polymers gradually during the filling and compacting phases Use Mold-flow (injection simulation) and Poly-flow (flow simulation) software for industrial parts.

Content	
	Session 1 (27 hours of classroom contact hours)
	Chapter I: General information on the molding of plastic
	materials.
	Chapter II: Injection molding of thermoplastics
	 Injection machines and systems.
	Different types of injection and moulds.
	3. Study of the injection molding cycle.
	4. Study of P, V, T and shrinkage diagrams.
	5. Influence of the main implementation parameters.
	6. Modeling of flows.
	7. Analysis of filling and compaction.
	8. Analytical calculations.
	9. Practical design of injection tools.
	10. Rules of thumb for building an injection mold.
	11. Cooling function: exchanges between the material and
	the mold and with the heat transfer system.
	Chapter III : Injection blowing of hollow bodies
	1. Principle of the technique
	2. Design of machines, molds and parts.
	3. Structure with several materials.
	4. Shape, volume and dimensions of the blank.
	5. Preform injection mold.
	6. Blow mold.
	7. Temperature regulation.
	8. Bi-oriented blowing.
	Chapter IV : Injection of thermosets
	1. Main injected materials.
	2. Machine design.
	3. Injection devices for powder and paste compounds.
	Tool architecture.
	4. Flow of the thermosetting material.
	5. Choice of the injection point, the joint plane and
	placement of the remains.
	6. Execution of the mold and heating system.
	Chapter V: Compression molding
	1. Raw material, pretreatment and composition of the
	thermosetting material.
	2. Role of heat during molding & Fluidity.
	3. Relationship between pressure, temperature and
	molding time.
	4. Transfer molding.
	Chapter VI : Thermoforming
	1. Processed materials and application of the method.
	2. Technical solutions used on forming machines. Design
	of thermoformed parts.
	3. Implementation and form of the object.
	Chapter VII: Rotational molding
	1. Materials used.
	2. Characteristics of objects.
	3. Design of machines and tools.
	4. Case of polycaprolactam (PA 6) in rotational molding.
C	Session 2 (14 hours of Laboratory workshop/semester)
-6	

	Poly-flow: Anisothermal flow of a molten polymer
	- Isothermal blowing
	- Swelling and Recirculation in a die. Case of Newtonian and Viscoelastic fluids; Co-extrusion Spinning.
	- Flow in the channel of an extrusion screw.
	- Mold-flow: Positioning of the injection point, calculation of injection pressures, optimal injection speed, temperature profile and prediction of the solid sheath.
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection Laboratory Practical
Reading list	Books and handouts, websites,
	https://www.ansys.com/products/fluids/ansys-polyflow

U.5.4Material Sciences (Elective UNIT 2)

Project (Innovent Materials)

Module designation	Material Sciences
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.4
Subtitle, if applicable	-
Courses, if applicable	- Materials Science
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Malek ATYAOUI
Language	French
Relation to curriculum	Professional module (Elective),
Type of teaching, contact hours	21 hours of Project/semester
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Material sciences, polymers & composites, physical chemistry, solid chemistry.Micro- and nanostructured products.Chemical engineering Reaction.
Module objectives/intended learning outcomes	 Objectives : Preparation of inorganic solids, host-guest chemistry, ionic liquids and its significance. Understanding composites and their industrial applications. Learning Outcomes: Select the materials and properties appropriate for a specific application. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
	 The ability to design components, systems, and processes for materials and metallurgical engineering based on engineering, economy, energy, environment, and sustainability.

Content	(21 hours of workshop sossion (Somostor)
	(21 hours of workshop session/ Semester) The purpose of these projects is to continue learning project management and teamwork through the development of a technological innovation project. By technological project, we mean a study intended to develop an idea initiated by a "customer= Supervisor". This must proceed from an innovation process aimed at creating "a new product, a new service, a new good". Students are divided into groups of 3 to 4 students. They are confronted with real professional and managerial situations,. Students groups will work on a given project during the semester in order to carry on an innovative process from the beginning to the end (concept/simulate/design).
	Project topic : Proposal 1 :
	Study of porosity in aeronautical laminated composite materials. Proposal 2 :
	Elaboration of materials / porous materials (Sol-gel, hydrothermal, microwave).
	Proposal 3 : Preparation of silver nano material Proposal 4 :
	Preparation of urea-formaldehyde resin Proposal 5:
	Elaboration of material for gas storage and catalytic applications Proposal 6 : Mesoporous/microporous silica based materials, functionalized hybrid materials and its applications.
	Proposal 7 : Applications of nano-structured materials in targeted drug delivery/pharmaceutical applications/industrial applications. Proposal 8 :
	Elastoplastic analyzes of progressive deformation on primary piping
Study and examination requirements and forms of examination	Format: Oral Presentation (50%) + Redaction of manuscript (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection
Reading list	Books and handouts, websites,

U.5.5Management & Corporate Culture

Quality Control & Standards

Module designation	Management & Corporate Culture
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.5
Subtitle, if applicable	-
Courses, if applicable	- Quality Control & standards
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Marouen BEN HAJ YAHIA
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 21 hours of classroom course
Workload	Total 42 hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	No recommended prerequisites
Module objectives/intended	Objectives:
learning outcomes	 Understand ISO 9000 standard requirements Understand all aspects of the certification process
	Learning Outcomes:
	Students will be able to :
	 Differentiatebetween the different aspects of certification and quality control, Set up a quality system process, Work on all aspect of ISO9000 certifications projects

Content	 Chapter I. Introduction Definition Key principles for quality management. Juran's Spiral of Quality. Chapter II - Define the ISO quality assurance standard What is ISO? The ISO name. What 'international standardization' means. Advantage of ISO standards for society. ISO and developing countries. Where can I find out about the standards? Who funds ISO. Certify to sell. Chapter II - ISO 9000 certification process Implementation Chapter IV - Preparation required before certification Chapter VI - Build your quality system Quality assurance plan (pack): a partnership tool. Definition and concepts. Role of quality assurance. Organization of the quality system.
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Final Exam (60%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection
Reading list	BOERI, Daniel. « Maîtriser la qualité : Tout sur la certification et la qualité totale (2e éd) ». Ed : Maxima, 2003. Website TUNAC <u>www.tunac.tn</u> ISO 9001:2008, ISO 17025 : 2005. https://www.iso.org/fr/iso-9001-quality-management.html

U.5.5 Management & Corporate Culture

Module designation	Management & Corporate Culture
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.5
Subtitle, if applicable	-
Courses, if applicable	- Startup
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Miss. Soukeina TOUITI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	21 hours Seminar/supervised Projects
Workload	Total 42 hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	No recommended prerequisites
Module objectives/intended learning outcomes	 Objectives: Understand all steps to start a project Understand all financial and legal issues Learning Outcomes: Students will be able to : Be familiar with the terms and formalities necessary for setting up a business, Use all the knowledge on process, legal and economic issues to start up a project

Startup

Content	Chapter I GENERAL INTRODUCTION
	 Definition and objectives of a project
	2. Type of projects
	3. Typology of companies
	Actors involved in a project
	5. The economic and financial environment of the company
	6. The Business model canvas (BMC): Application and
	workshop
	Chapter II: Stages of business creation
	1. The profile of the creator and entrepreneurial culture
	2. Identification of a project: idea and opportunities
	3. Market research
	4. Feasibility study
	5. Profitability study: Economic and financial evaluation
	6. Financing Plan
	7. Study of the preliminary implementation project
	Chapter III: Preparation of the project
	1. The market and commercial means
	2. Means of production
	3. Human resources
	4. Space requirements
	5. Development of a business plan
	Chapter IV: Financial evaluation methods of a project 1. The cost of the investment
	The instruments and methods for calculating the profitability of the project
	3. Capitalization and discounting
	4. Net Present Value Method
	5. Internal rate of return method
	6. Choice and decision criteria
	7. Case studies
	Chapter V: The method of financing companies
	1. Self-financing
	2. Equity
	3. Debt
	4. The industrial promotion fund, SICAR, spin-off
	5. Project financing scheme
	Chapter VI: The LEGAL file of the company
	1. Legal formalities and constitution of a company:
	2. Statutes, trade register, agreement (API, CEPEX,) Tax
	registration number, publication in the official journal,
	3. Capital formation and payment of shares
	Chapter VII: Environment and support for business creation in
	Tunisia.
	1. Business environment and export support
	2. Administrative and technical support
	3. Supervision and training of young promoters, business
	incubators
	4. Role of Tunisian National Institutions in promoting business
	Startup: API, APIA, BTS, BFPME,

Study and examination requirements and forms of examination	Format: Evaluation & Oral Presentation (100%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection
Reading list	- Casteran S., Créer son entreprise, PRAT, 2008.
	- Frogier V., La création d'entreprise de A à Z, Dunod, 2007.
	- Le Guern P., Isabello, J., Créer son entreprise, Jacob-Duvernet, 2006.
	- Montbello M., Création d'entreprise : Connaissances et Analyses Stratégiques, Economica, 2004.
	- Moschetto B. L., Le Business Plan, Economica, 3 ^{ème} édition, 2005.
	- Portella A., Trouver Une Idée de Création d'Entreprise, Studyrama, 2009.
	 Stutely R., Concevoir un Business plan Efficace, Village Mondial, 2^{ème} édition, 2005.
	- Triquère C., Le Grand livre de la Création d'Entreprises, Studyrama, 2009.
	- Verstaete T., Saporta., B., Création d'Entreprise et Entrepreneuriat, Editions de l'ADREG, 2006.

U.5.5 Management & Corporate Culture

Supply Chain Management

Module designation	Management & Corporate Culture
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 5.5
Subtitle, if applicable	-
Courses, if applicable	- Supply Chain Management
Semester (s) in which the module is taught	-Semester 1 (S5)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd Amine OUALHA
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	21 hours seminar/ projects
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Lean Management, Industrial Production Management.
Module objectives/intended learning outcomes	 Objectives: 1. Organize, manage and monitor the functioning of the global logistics chain 2. Collaborative Logistics
	Learning Outcomes:
	Students will be able to :
	 Choose an external logistics provider (distributor, transporter, subcontractor, supplier) Model and solve logistics network problems

Content	Seminar Sessions:
content	I. Introduction to supply chain management:
	1- Introductionto Supply Chain Management
	2- Stakes of the SCM
	3- SCM decisionsandprocess
	4- 3 pointsto finish
	II. Selectionofproductionsites
	Introduction
	 Procedureforselecting a newsite
	 Methodforselecting potential sites:
	Multicriteriaapproachof Brown and Gibson
	III. Flow management:
	1- Introduction
	2- Notionsrelatedtoflowmanagement
	3- Wilson model
	4- Newspaper vendor model at. Integrated supplychain
	(single-actor case)
	b. Supply Chain not integrated (two players)
	vs. Coordinationofthe Supply Chain bybuying back the un
	sold quantity
	5- Single-period flow control
	6-Heuristics of Silver-Meal
	7-Case of 2 levels (1 supplierand 1 seller)
	8-An applicationforeachmodel
	IV. Logisticscostsandvaluecreation
	Introduction
	Nature ofcosts
	Cost determination by activity (ABC)
	Choice of means of transport
	a. Description of the elements of a modern transport system
	b. Advantages and disadvantages of the various modes of
	transport c. Cost modeling and options analysis
	Project (14 hours of Self-Study/ Semester)
	Students are divided into groups of 4 students. A project will be assigned to each students group early in the semester. The
	students will be asked to develop a project plan and will work on
	project throughout the course.
	Students groups will work on a given project from the list below
	statents groups will work on a given project nom the list below
	Project topic :
	Proposal 1 :
	Modelling the enablers and alternatives for sustainable supply
	chain management
	Proposal 2 :
	The application of Halal in supply chain management
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Oral Presentation Project (10%) + Final Exam (50%)
Crammation	

Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection
Reading list	-Analysis, Design, Second edition, John Wiley and Sons. GLOVER, F., D. KLINGMAN et N.
	-SHAPIRO, J.F. (2001). Modeling the Supply Chain, Duxbury, and Thomson learning.
	-TOMPKINS, WHITE, BOZER et TANCHOCO (2003). Facilities Planning, Wiley.
	-An Introduction to Sustainable Transporta on Policy, Planning and Implementa on. By Preston L.
	-Schiller, Eric C. Bruun and Jeffrey R. Kenworthy. April 2010. ISBN 9781844076659
	-Closed-Loop Supply Chains: New Developments to Improve the Sustainability of Business
	-Pracces. Edited by Mark E. Ferguson and Gilvan C. Souza, Auerbach Publica ons 2010. Print ISBN:
	978-1-4200-9525-8. eBook ISBN: 978-1-4200-9526-5

l