

ULT Chemical Engineering

Subjects Modules for S4

Semester 2 Year 2

U.4.1Chemical Engineering Operations

Unit Operation II: Physical I

(Distillation-absorption-Extraction)

Module designation	Chemical Engineering Operations
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.1
Subtitle, if applicable	-
Courses, if applicable	- Unit Operation II : Physical I (Distillation-absorption-Extraction)
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Mr. Mohamed Ridha KHIARI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 33 hours of classroom course/semester 9 hours practical workshop/ Semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Heat transfer, Fluid mechanics, Thermodynamic, Regulation and control, Applied thermodynamic, mass & energy balance

Module objectives/intended learning outcomes	 Objectives: The module aims to give engineering students the knowledge of the theory and the equilibrium laws, define and categorize the main unit operations and separation and purification apparatus used in industry explain several specific examples of industrial applications for each of these unit operations precisely describe the principle of operation both at the macroscopic level (incoming flows, outgoing flows) and at the microscopic level (particle, interface, molecule) by identifying the physico-chemical phenomena, the thermodynamic constraints and the kinetic limits which
	dictate the separation Learning Outcomes:
	Students will be able to :
	 Make material and energy balances, Determine the theoretical number of stages by the method of McCabe -Thiele. Identify the operating parameters that dictate the efficiency of separation and purification processes Establish and calculate mass balances and energy balances for batch, semi-continuous and continuous processes and size installations to carry out unit operations

Content	Chapter I. ABSORPTION
content	1- Theoretical notions
	2- Determination of simple absorption elements
	3- Effectiveness of the operation
	4- Apparatus
	Chapter II. LIQUID -LIQUID EXTRACTION
	1- Theoretical notions
	2- Counter-current extraction
	3- Cross current extraction
	4- Effectiveness of the operation
	5- Factors involved in the extraction
	6- Apparatus
	Chapter III CORRECTION
	1- Liquidvapour balance
	2- Discontinuous rectification
	3- Correction contained
	4- Efficiency
	5- Azeotropic and extractive grinding applications
	(9 hours of Practical workshop in Laboratory-Unit operations II: Physics I)
	1. Continuous distillation of an ethanol-water mixture
	Objectives:
	-Follow the start-up of the distillation column,
	-Determine the equilibrium point of the column,
	-Calculate the number of theoretical trays,
	-Determine the efficiency of the column,
	- Make a conclusion about continuous distillation.
	2. Liquid-liquid extraction of acetic acid from a (Methyl IsoButyl
	Ketone)MIBK-Acetic acid mixture
	Objectives :
	-Monitor the operating regime of the extraction column.
	-Visualize the point of equilibrium of the column.
	-Calculation of overall mass balances and on acetic acid.
	-Determine the number of theoretical stages.
	3. Adsorption and desorption of acetic acid in aqueous solution.
	Objectives :
	The solution loaded with solute to be adsorbed (acetic acid) is
	introduced at the top of the column.
	It is placed in prolonged contact with the bed of activated carbon
	present in the column.
	The flow can be either at atmospheric pressure or under
	pressure, depending on the viscosity of the mixture to be
	separated.
Study and examination	
	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written
requirements and forms of	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)

Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	Video projection
	Practical Workshop in Laboratory
Reading list	Unit Operations of Chemical Engineering.Peter Harriott, McCabe and smith.2020.
	Unit Operations of Chemical Engineering.Dennis C. PrieveCarnegie Mellon University, Spring Semester, 2017.

U.4.1Chemical Engineering Operations

ProUnit Operation III: Physical II

(Adsorption-Drying-Crystallization)

Module designation	Chemical Engineering Operations
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.1
Subtitle, if applicable	-
Courses, if applicable	- Unit Operation III : Physical II
	(Adsorption-Drying-crystallization)
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Mr. Belgacem CHANDOUL
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 33 hours of classroom course/semester
	9 hours practical workshop/ Semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the	- Minimum attendance rate: 80% of the total contact hours
examination regulations	>20 % of nonattendance = elimination for exams
Recommended prerequisites	Heat transfer, Fluid mechanics, Thermodynamic, Regulation and control, Mass transfer. Transfer & transport phenomena

Module objectives/intended learning	Objectives :
Module objectives/intended learning outcomes	 Define and categorize the main unit operations and separation and purification apparatus used in industry Explain several specific examples of industrial applications for each of these unit operations Precisely describe the principle of operation both at the macroscopic level (incoming flows, outgoing flows) and at the microscopic level (particle, interface, molecule) by identifying the physico- chemical phenomena, the thermodynamic constraints and the kinetic limits which dictate the separation Establishing and calculating mass balances and energy balances for batch, semi-continuous and continuous processes and sizing installations to carry out unit operations Giving the students the necessary background for the selection, analysis and design of some of the most common separation processes.
	Learning Outcomes:
	Students will be able to :
	 Describe precisely the principal operation on a macroscopic and microscopic level. Identify physicochemical phenomena, the thermodynamic constraints and the kinetics limits which dictate the separation, Establish and calculate mass balances and energy balances and sizing installations allowing unit operations to be carried out. Interpret and adapt the main mathematical developments leading to the useful equations to size there 2 with equations.
	these 3 unit operations,5. Apply the empirical, analytical and graphical methods conventionally used to size unit operations.

Content	Chapter 1: GENERAL INFORMATION ON UNIT
Content	OPERATIONS
	1. Definition
	2. Classification
	3. Reminder on balances (mass and energy)
	4. Reminder on sorption isotherms
	Chapter 2: DRYING
	1. General (definition, Objectives, Technologies, Choice of
	drying process)
	2. Characterization of the products to be dried
	2.1. Anhydrous product
	2.2. Dry product
	2.3. Wet product
	2.4. Humidity rate (wet base and anhydrous base)
	3. Characterization of the drying air
	3.1. Absolute humidity and relative humidity of a gas
	3.2. Dew point
	3.3. Dry and wet temperature of the gas
	3.4. Humid air diagram
	4. Drying modes
	4.1. Direct or convection drying
	4.2. Drying by indirect contact or by conduction
	4.3. Radiant drying
	4.4. Drying by dielectric losses
	4.5. Dry evaporation
	5. Drying kinetics
	5.1. Drying speed
	5.2. Curves and drying phases
	5.3. Drying time
	6. Calculation of dryers
	6.1. Principles
	6.2. Basic equations
	6.3. Material balance
	6.4. Thermal balance
	Chapter 3: ADSORPTION
	1. General and definitions
	2. Types of adsorption
	2.1. Physisorption
	2.2. Chemisorption
	2.3. Persorption
	3. Theoretical and practical considerations
	3.1. Adsorption balance
	3.2. Adsorption theories
	3.2.1. Theory of the mono-molecular layer
	3.2.2. Multimolecular layer theory
	3.2.3. Theory of film condensation
	3.3. Adsorption equations
	3.4. Experimental determination of adsorption isotherms
	4. Adsorption kinetics
	5. Processes and apparatus
	5.1. Static adsorption
	5.2. Dynamic adsorption
	5.3. Dynamic adsorption relationships
0	
8	

	Charter A. CDVSTALLIZATION
	Chapter 4: CRYSTALLIZATION
	1. Introduction and definitions
	2. Notion of concentration
	3. Saturation and solubility - Solubility curves
	4. Types of crystallization
	4.1. Dry way
	4.2. Wet way
	5. Kinetics and mechanisms of crystallization
	6. Mass and energy balance
	7. Crystallization by cooling
	8. Solvent evaporation crystallization
	(9 hours of Practical workshop- Unit operations III: Physics
	II)
	1. Evaporation-Crystallization of copper sulfate
	Objectives :
	Crystallization is a widely used process in industry. It
	concerns a wide variety of products: pharmaceuticals,
	foodstuffs and chemicals.
	The proposed manipulation aims to make the student
	aware of the various parameters and variables involved in
	the implementation of crystallization. This study will allow,
	from mass and thermal balances, to conclude on this
	unitary process engineering operation.
	2. Freeze-drying
	Objectives :
	The freeze-drying unit is intended for the study of the
	process of drying food, chemical or pharmaceutical
	products by freeze-drying (sublimation of ice in vapor).
	Freeze-drying involves extracting water from a frozen
	product. The drying is carried out by sublimation, which is
	direct passage of water from the solid state to the gas
	state.
	This process is carried out under vacuum with a product
	temperature below -10 ° C. The goal of this process is to
	obtain a product which is easily soluble in water and which
	has the same
	Characteristics that the original product after rehydration,
	which is not denatured asproducts dried by heating, which
	can be stored easily without too many changesenzymatic,
	bacterial and chemical.
	This practical work is a working basis for all those
	concerned with knowing the various risks encountered on
	such a unit and the safety to be involved.
Study and examination requirements	Written Mid-term Exam (25%) + Practical Exam (25%)+
and forms of examination	Written Final Exam (50%)
	Course Material (Hard/ Soft copy) for classroom & Online
Media employed	(Moodle ULT)
	Video projection
	Practical Workshop in Laboratory
	r ractical workshop in Laboratory

l

Reading list	EmilianKoller, «Aide-mémoire Génie chimique », DUNOD, 4 ^{eme} édition, 2013
	Charreau A. et Cavaille R., « Techniques de l'ingénieur – Génie des procédés», Séchage. Théorie et calculs.
	Robert L., «Techniques de l'ingénieur - Génie des procédés », Adsorption.
	Unit Operations of Chemical Engineering.Peter Harriott, McCabe and smith.2020.

U.4.1Chemical Engineering Operations

Simulation: Aspen II (PIPESIM)

Module designation	Chemical Engineering Operations
Module level, if applicable	2 nd year of chemical engineering degree
Code, if applicable	U. 4.1
Subtitle, if applicable	-
Courses, if applicable	- Simulation : Aspen II(PIPESIM)
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Mr. Baha Eddine GHARBI
Language	English
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	9 hours of Practical Workshop in Lab/ semester 12 hours Project
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Fluid mechanics, Handling of modelling software, thermodynamics models
Module objectives/intended learning outcomes	 Objectives : Introduce PIPESIM software to students Understand the modelling techniques used Use engineering documents such as pipeline layouts and technical data sheets Perform pipeline design, Enter the input/output parameters of devices flows Analyse and interpret simulation results Learning Outcomes: Model single-phase and two phase fluid flows in pipeline Collect geographical data of a given pipeline using Excel Introduce the geographic data of the pipeline through the GIS system integrated into the software

Contont	Workshop on PIPESIM Software:
Content	The Steady-State Multiphase Flow Simulator.
	Exercise 1: General introduction
	1 Introduction to PIPESIM software
	2 The main characteristics of PIPESIM
	3 Modelling of pipeline networks with PIPESIM
	Exercise 2: Modelling of the transmission of natural gas in
	southern Tunisia
	Exercise 3: Modelling of oil transmission from an offshore
	station to a treatment station in Nabeul.
	Exercise 4: Modelling the flow of fuel gas (fuel gas) in an oil
	station
	Exercise 5: Evaluation test
	Exercise 6: Hydrate formation problem in pipelines
	Exercise 7: NGL condensation problem in pipelines
	Exercise 8: Pipeline pigging operation
	Project (12 hours of Practical Project/Semester)
	A project will be assigned to each student early in the semester.
	The student will be asked to develop a project plan and will work
	on project throughout the course.
	Students will work individualy on a given project from the list
	below
	Project topics:
	Proposal 1 :
	Natural gas expedition from KRD-SW-1 station located in
	DEBBECH to EB-406 station located in EL BORMA: sizing, flow
	assurance and economic analysis of a gathering pipeline.
	Proposal 2 :
	Installation of a firefighting unit in DJBEL GROUZ CPF: Plant
	sitting, water and foam requirements calculation, firefighting
	network hydraulic simulation, equipment sizing and economic
	analysis of the firefighting unit.
Study and examination	Format: Continuous Control, Practical Exam (100%).
requirements and forms of	
examination	
	Course Material (Hard/ Soft copy) for classroom & Online
Media employed	(Moodle ULT)
	Video projection
	Exercises, PIPESIM software, computer, excel
Reading list	-Hydrates de gaz naturel dans l'assurance du débit édité par
	Carolyn Ann Koh, AmadeuSum, Gulf Professional Publishing, Oct
	12, 2010 - Technology& Engineering
	- Practical flow assurance : phase behavior, multiphase flow, and
	organic solids, Zachary Mark Aman, Taylor & Francis, 2017
	-Evaluating Gas Network Capacities, edited by Thorsten Koch,
	Benjamin Hiller, Marc E. Pfetsch, Lars Schewe, SIAM, Mar 17,
	2015 – Mathematics

U.4.2 Process & Dynamic

Dynamic of systems and process Control

Module designation	Process & Dynamic
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.2
Subtitle, if applicable	-
Courses, if applicable	- Dynamic of systems and process Control
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Mr. Mohamed Ridha KHIARI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 42 hours of classroom course/semester
Workload	Total 63 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Applied mathematics, thermodynamic, Mass & energy balance, Applied computing, operations units, Control & Regulation

Madula abjectives (intended	Objectives
Module objectives/intended learning outcomes	 Objectives: Acquire the notion of system dynamics and Dwell Time Distribution Familiarize student with the basic control of continuous-time single-variable systems Explain control and tracking techniques based on PID and improved techniques Show the importance and the dynamic consequences of the control on the processes
	Learning Outcomes:
	Students will be able to :
	 know how to describe the dynamic functioning of linear systems Be able to design a feedback loop and tune a PID controller Know improved methods compared to the PID regulator Establish performance criteria for real reactors based on the concept of DTS
Content	Chapter I. Dynamic process modelling
	 1.1. State representation 1.2. Transfer functions 1.3. Frequency analysis 1.4. Bode diagrams 1.5. Characterization of a system by frequency analysis Chapter II. Study of usual open-loop linear systems 1.2. Second-order systems 1.3. Pure delay systems 1.4. Distributed parameter systems Chapter III. Notion of Systems Dynamics applied to DTS 1.1. Characterization and identification of ideal reactors 1.2. Modelling of complex systems Chapter IV. Feedback linear control 4.1. PID controller 4.2. Dynamics of feedback controlled processes Chapter V. Stability analysis 5.1. Analysis in state space 5.2. Stability analysis of feedback systems 5.3. Stability criterion of Bode and Nyquist Chapter VI. Synthesis of regulators by looping 6.1. Choice and adjustment of PID regulators 6.2. Improved PIDs 6.3. Order by internal model Chapter VII. Improved control systems 1.1. Pure delay compensation, inverse response 1.2. Cascade selective shared feedforward control
Study and examination requirements and forms of examination	1.2. Cascade, selective, shared, feedforward control Written Mid-term Exam (40%) + Written Final Exam (60%)

Media employed	Course Material (Hard/ Soft copy) for classroom& Online (Moodle ULT)
	Video projection
	Practical Workshop in Lab
	Matlab software
Reading list	-« Commande des procédés », Jean-Pierre Corriou, Lavoisier Tec&Doc (2003)
	-Méthodes numériques et optimisation (J.P.Corriou, Lavoisier Tec&Doc, 2010).
	-Techniques de Commande avancée. ACHOUR AbdelYazid. Université A.MIRA-BEJAIA.
	 Commande et optimisation de systèmes dynamiques. Frédéric Bonnans, Pierre Rouchon. EAN : 9782730212519.

U.4.2 Process & Dynamic

Applied Process optimization

Module designation	Process & Dynamic
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.2
Subtitle, if applicable	-
Courses, if applicable	- Applied Process Optimization
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	PhdFeriel REZOUGA
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 12 hours of classroom course 9hours practical workshop/ Semester
Workload	Total 42hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Applied Mathematics, Applied computing,
Module objectives/intended learning outcomes	 Objectives : 1. Introduce students to optimization theory and decision support. 2. Build mathematical models for complex decision problems
	 Learning Outcomes: Students will be able to : Solve mathematical models using an algebraic technique Acquire an in-depth knowledge of certain techniques and tools currently considered as basic methods in Operations Research.

Content	Chapter 1. Linear Programming
	1. General form of a Linear Program
	2. Canonical and standard form of a Linear Program
	3. Matrix Writing of a Linear Program
	4. Modelling a Problem
	5. Application exercises
	Chapter 2. Resolution of a Linear Program:
	1. Graphic Method
	2. Simplex method
	3. Application exercises
	Chapter 3. Extension of Linear Programming: Duality
	1. Dual Linear Problem
	2. Production problem
	3. Mixing problem
	4. Properties of duality
	5. Application exercises
	Chapter 4: Optimization under constraints
	1. Relaxation method
	a. Description of the method
	b. Special case of quadratic functions
	2. Gradient methods
	a. Best-step gradient method
	b. Other gradient-type methods
	3. The conjugate gradient method
	a. The quadratic case
	b. Case of any function J
	Chapter 5. Post-Optimization Analysis
	1. Economic interpretation
	2. Sensitivity analysis of results
	Application exercises
	9 hours of Practical workshop in Laboratory /semester
	I- Linear programming
	1- The conditions and stages of formulation of a PL
	2- Examples
	II- The graphical method (EXCEL)
	1- Graphic representation of constraints
	2- Graphic representation of the objective function
	3- Finding the optimal solution
	4- Examples
	III- Use of resolution software and analysis of results
	1- EXCEL solver
	a) Installing the 'Solver' add-on
	b) Preparation of the Excel sheet
	c) Description of the Solver window
	d) Solver Setup
	e) Exercises
	2- Optimization software: CPLEX
	a) Initialization
	b) OPL (Optimization Programming Language)
	c) Creation and resolution of a simple model
	- Creation of the project and the model
17	- OPL Syntax
	- Resolution
	- Exercises

Study and examination requirements and forms of examination	Format: Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom& Online (Moodle ULT)
	Video projection
	Practical Workshop in Lab
Reading list	-Précis De Recherche Opérationnelle : Pr. R. Faure (Dunod)
	-Précis de recherche opérationnelle ; Robert Faure, Bernard Lemaire, Christophe Picouleau.(2014).
	- Optimisation Discrète ; Alain Billionnet (2007).

U.4.3Advanced Separation Processes

Membrane Technology

Module designation	Advanced Separation Processes
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.3
Subtitle, if applicable	-
Courses, if applicable	- Membrane Technology
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil Zaghdoudi
Lecturer	Phd. Dorra ENNIGROU
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 39 hours of classroom course 3 hours practical workshop/ Semester
Workload	Total 63 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Fluid mechanics, Mass transfer, Applied heat transfer,

Module objectives/intended	Objectives :
learning outcomes	 Give the students the technical background onmembrane technology and to provide wide level of understanding that will allow them todesign, using appropriate combinations of unit processes and water treatment plant
	 Acquire the physico-chemical foundations of separation processes using artificial membranes.
	 Have an overview of the problems related to the process and in particular of hydrodynamics and mass transfer
	 Explain the different driving forces behind existing membrane separation processes
	 Resources and Need for membrane technology in water treatment and otherprocess engineering plants
	Learning Outcomes:
	Students will be able to :
	 Classify the technical applications of industrially important membrane processes
	 Explain the differences in the use of membranes liquid media, gases and in liquid/gas mixtures
	 Use the relevant membrane for various chemical processes.
	 Apply membrane technology in process industries Use appropriate method to reduce membrane fouling

-Nature - structure - structure - Modules - Water shortages and need for membrane technology Chapter II : Classification of membranes - Membrane processes - Principle of membrane filtration Chapter III : Manufacturing and Characterization of Orga Membranes - Dense - Asymmetrical - Hollow fiber Chapter IV : Microfiltration membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid liq separations and cake filtration,		Chapter I: General Notions on Membranes
 structure Modules Water shortages and need for membrane technology Chapter II : Classification of membranes Membrane processes Principle of membrane filtration Chapter III : Manufacturing and Characterization of Orga Membranes Dense Asymmetrical Hollow fiber Chapter VI: Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to conflict and processes, Time of filtration, Calculation of cake properties, Time of filtration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of ME and UP Membrane fooling Trans-membrane pressure Filtration, Introduction to Non filtration; Introduction to Non filtration; Applications, of MF and UP Membrane pressure Filtration/Fouling mechanisms Chapter VI Nano filtration; Introduction to Non filtration; Applications of MF and UF Membrane fooling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI Nano filtration; -Introduction to Nano filtration; -Case studies -Confinement issues and effects on physical properties, -Pore size distributions; -Case tudies -Confinement issues and effects of spall Molecule Permeation Throt Dense Polymers -Solute-membrane interactions 	Content	-
 - Modules - Water shortages and need for membrane technology Chapter II: Classification of membranes - Membrane processes - Principle of membrane filtration Chapter III: Manufacturing and Characterization of Orga Membranes - Dense - Asymmetrical - Hollow fiber Chapter III: Manufacturing membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - General membrane equations and adaptation to ca filtration, - Calculation of cake properties, - Time of filtration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of separations, - Case studies - Applications of MF and UF - Membrane proformance - Membrane proformance - Membrane pressure - Filtration/Fouling mechanisms Chapter VI Nano filtration: - Introduction to Nano filtration; - Selute-membrane targe, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies - Readelistion of Small Molecule Permeation Throo Dense Polymers - Solute-membrane interactions 		
 Water shortages and need for membrane technology Chapter II: Classification of membranes Membrane processes Principle of membrane filtration Chapter III: Manufacturing and Characterization of Orga Membranes Dense Asymmetrical Hollow fiber Chapter IV: Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to car filtration, General membrane equations, case studies Chapter V Ultrafiltration membranes: Introduction to drake properties, Time of filtration processes, Mass transfer and concentration polarization, case studies Chapter V Ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane performance Membrane performance Membrane performance Membrane performance Membrane pressure Filtration/Pouling mechanisms Chapter VI: Nano filtration, processes, Introduction to Nano filtration processes, Gonfinement issues and effects on physical properties, Fore size distributions, Case studies Chapter VI: Sund and studies Chapter VI: Fundamentals of Small Molecule Permeation Throd Dense Polymers Solute-membrane interactions 		
Chapter II : Classification of membranes -Membrane processes - Principle of membrane filtration Chapter III : Manufacturing and Characterization of Orga Membranes - Dense - Asymmetrical - Hollow fiber Chapter IV : Microfiltration membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - General membrane equations and adaptation to ca filtration, - Calculation of cake properties, - Time of filtration, - Bed depth and process optimization, case studies Chapter V Ultrafiltration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of Separations, - Case studies - Applications of MF and UF - Membrane performance - Membrane prossure - Filtration/Fouling mechanisms Chapter V I Nano filtration: - Introduction to Nano filtration: - Introduction to Nano filtration; - Introduction to Nano filtration; - Case studies Chapter VI: Nano filtration; - Introduction to Nano filtration; - Case studies Chapter VI: Nano filtration; - Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throo Dense Polymers - Solute-membrane interactions		
 -Membrane processes - Principle of membrane filtration Chapter III : Manufacturing and Characterization of Orga Membranes - Dense - Asymmetrical - Hollow fiber Chapter IV : Microfiltration membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid ling separations and cake filtration, - General membrane equations and adaptation to ca filtration, - Calculation of cake properties, - Time of filtration membranes: - Calculation of cake properties, - Time of filtration membranes: - Introduction to ultrafiltration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of separations, - Case studies - Applications of MF and UF - Membrane performance - Membrane prossure - Filtration/Fouling mechanisms Chapter VI : Nano filtration - Introduction to Nano filtration processes, - Gase studies - Applications of MF and UF - Membrane fouling - Trans-membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration - Introduction to Nano filtration processes, - Confinement issues and effects on physical properties, - Ore size distributions, - Case studies Chapter VI : Fundamentals of Small Molecule Permeation Throo Dense Polymers - Solute-membrane interactions 		
 Principle of membrane filtration Chapter III : Manufacturing and Characterization of Orga Membranes Dense Asymmetrical Hollow fiber Chapter IV : Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to ca filtration, General membrane equations and adaptation to ca filtration, General membrane equations and adaptation to ca filtration, General membrane sequences Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane porformance Membrane pressure Filtration/Fouling mechanisms Chapter V I: Nano filtration Introduction to Nano filtration Applications of MF and UF Membrane pressure Filtration/Fouling mechanisms Chapter VI: Nano filtration Introduction to Nano filtration Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Nano filtration processes, Case studies Chapter VI: Nano filtration processes, Case studies 		-
Chapter III : Manufacturing and Characterization of Orgation Membranes Dense - Asymmetrical Hollow fiber Chapter IV : Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to cat filtration, Calculation of cake properties, Time of filtration Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, -Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI Nano filtration Introduction to Nano filtration - Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI: Nano filtration - Equilibrium partitioning, pore modelsfor neutral solute rejection,		
Membranes - Dense - Asymmetrical - Hollow fiber Chapter IV: Microfiltration membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - General membrane equations and adaptation to cr filtration, - Calculation of cake properties, - Time of filtration, - Bed depth and process optimization, case studies Chapter V Utrafiltration membranes: -Introduction to ultrafiltration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of separations, -Case studies - Applications of MF and UF - Membrane performance - Membrane pressure - Filtration/Fouling mechanisms Chapter VI: Nano filtration; - Introduction to Nano filtration, processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, - Oconfinement issues and effects on physical properties, - Requilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, <th></th> <th></th>		
 Dense Asymmetrical Hollow fiber Chapter IV : Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid lig separations and cake filtration, General membrane equations and adaptation to ca filtration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of MF and UF Membrane proformance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI: Nano filtration Introduction to Nano filtration processes, Effects of membrane forage, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throd Dense Polymers Solute-membrane interactions 		
 Asymmetrical Hollow fiber Chapter IV: Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to crifiltration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI: Nano filtration Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Filtration/Fouling mechanisms 		
 Hollow fiber Chapter IV : Microfiltration membranes: Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to crifitration, General membrane equations and adaptation to crifitration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane, pore modelsfor neutral solute rejection, Effects of membrane forsge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throd Dense Polymers Solute-membrane interactions 		
Chapter IV : Microfiltration membranes: - Introduction to frontal and cross flow filtration, - Development of knowledge and understanding of solid liq separations and cake filtration, - General membrane equations and adaptation to ca filtration, - General membrane equations and adaptation to ca filtration, - Calculation of cake properties, - Time of filtration, - Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: -Introduction to ultrafiltration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of Separations, - Case studies - Applications of MF and UF - Membrane preformance - Membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration: -Introduction to Nano filtration processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, <td< th=""><th></th><th>-</th></td<>		-
 Introduction to frontal and cross flow filtration, Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to catifitration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of Separations, Case studies Applications of MF and UF Membrane performance Membrane programs Filtration/Fouling mechanisms Chapter VI Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Thror Dense Polymers 		
 Development of knowledge and understanding of solid liq separations and cake filtration, General membrane equations and adaptation to cr filtration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimizations of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration Effects of membrane desrge, Confinement issues and effects on physical properties, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane of Small Molecule Permeation Throu Dense Polymers Solute-membrane interactions 		-
separations and cake filtration, - General membrane equations and adaptation to ca filtration, - Calculation of cake properties, - Time of filtration, - Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: -Introduction to ultrafiltration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of separations, - Case studies - Applications of MF and UF - Membrane performance - Membrane performance - Membrane proluing - Trans-membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration - Introduction to Nano filtration processes, - Effects of membrane charge, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies - Case studies - Applications, - Case studies - Solute-membrane interactions		
 General membrane equations and adaptation to car filtration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration Introduction to Nano filtration processes, Confinement issues and effects on physical properties, Pore size distributions, Case studies Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throut Dense Polymers Solute-membrane interactions 		
filtration, Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: -Introduction to ultrafiltration processes, - Mass transfer and concentration polarization effects, - Simple gel theory, - Osmotic pressure effects, - Effects of membrane charge, - Optimization of separations, - Case studies - Applications of MF and UF - Membrane performance - Membrane pressure - Trans-membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers - Solute-membrane interactions		·
 Calculation of cake properties, Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of Separations, -Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, -Case studies 		- General membrane equations and adaptation to cake
 Time of filtration, Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI: Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		
 Bed depth and process optimization, case studies Chapter V Ultrafiltration membranes: Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane prossure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies 		- Calculation of cake properties,
Chapter V Ultrafiltration membranes: -Introduction to ultrafiltration processes, -Mass transfer and concentration polarization effects, -Simple gel theory, -Osmotic pressure effects, -Effects of membrane charge, -Optimization of separations, -Case studies -Applications of MF and UF -Membrane performance -Membrane fouling -Trans-membrane pressure -Filtration/Fouling mechanisms Chapter VI : Nano filtration -Introduction to Nano filtration processes, -Equilibrium partitioning, pore modelsfor neutral solute rejection, -Effects of membrane charge, -Confinement issues and effects on physical properties, -Pore size distributions, -Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throw Dense Polymers -Solute-membrane interactions		
 Introduction to ultrafiltration processes, Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		 Bed depth and process optimization, case studies
 Mass transfer and concentration polarization effects, Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		Chapter V Ultrafiltration membranes:
 Simple gel theory, Osmotic pressure effects, Effects of membrane charge, Optimization of separations, -Case studies Applications of MF and UF Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throut Dense Polymers Solute-membrane interactions 		-Introduction to ultrafiltration processes,
 Osmotic pressure effects, Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throut Dense Polymers Solute-membrane interactions 		- Mass transfer and concentration polarization effects,
 Effects of membrane charge, Optimization of separations, Case studies Applications of MF and UF Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VI: Fundamentals of Small Molecule Permeation Throut Dense Polymers Solute-membrane interactions 		- Simple gel theory,
 -Optimization of separations, -Case studies - Applications of MF and UF - Membrane performance - Membrane fouling - Trans-membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration: - Introduction to Nano filtration processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throut Dense Polymers - Solute-membrane interactions 		- Osmotic pressure effects,
-Case studies - Applications of MF and UF - Membrane performance - Membrane fouling - Trans-membrane pressure - Filtration/Fouling mechanisms Chapter VI : Nano filtration: - Introduction to Nano filtration processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers - Solute-membrane interactions		- Effects of membrane charge,
 Applications of MF and UF Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		-Optimization of separations,
 Membrane performance Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		
 Membrane fouling Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		
 Trans-membrane pressure Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throut Dense Polymers Solute-membrane interactions 		
 Filtration/Fouling mechanisms Chapter VI : Nano filtration: Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers Solute-membrane interactions 		
Chapter VI : Nano filtration: - Introduction to Nano filtration processes, - Equilibrium partitioning, pore modelsfor neutral solute rejection, - Effects of membrane charge, - Confinement issues and effects on physical properties, - Pore size distributions, - Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throw Dense Polymers - Solute-membrane interactions		
 Introduction to Nano filtration processes, Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers Solute-membrane interactions 		
 Equilibrium partitioning, pore modelsfor neutral solute rejection, Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers Solute-membrane interactions 		
 Effects of membrane charge, Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers Solute-membrane interactions 		
 Confinement issues and effects on physical properties, Pore size distributions, Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers Solute-membrane interactions 		
- Pore size distributions, - Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers - Solute-membrane interactions		-
- Case studies Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers - Solute-membrane interactions		
Chapter VII: Fundamentals of Small Molecule Permeation Throu Dense Polymers - Solute-membrane interactions		
Dense Polymers - Solute-membrane interactions		
- Solute-membrane interactions		-
- Free volume theory		
- Donnan's equilibrium		
Chapter VIII : Quantitative Aspects		
-Modelings		-
- Selectivity and flow		
- Restrictions		
Chapter IX : Industrial applications		
- Gas diffusion and permeation		
- Pervaporation		
- Reverse osmosis		
- Ultrafiltration		
- Electrodialysis		
- Electrolysis		- Electrolysis

	3 hours of Practical Laboratory workshop/Semester
	Determination of the selectivity of the membrane Objectives : Determination of the selectivity of the membrane by a test at constant pressure and by test at constant conversion rate. Verification of mass balances.
Study and examination requirements and forms of examination	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection Practical Workshop in Lab
Reading list	-Membrane Modification: Technology and Applications" by CRC Press (ISBN-13:978-1439866351), 2012. N. Hilal, M. Khayet and C. J. Wright.
	- Membrane Distillation: Principles and Applications, M. Khayet and T. Matsuura, Elsevier, 2011.
	 "Methods employed for control of fouling in MF and UF membranes: A Comprehensive Review", N. Hilal, O. Ogunbiyi, N. J. Miles and R. Nigmatullin. Separation Science and Technology. Volume 40 (10)(2005) pp 1957-2005.
	-'A review of atomic force microscopy applied to cell interactions with membranes'. N. Hilal, W. R. Bowen, L. Al-Khatib and O. Ogunbiyi. Trans IChemE, Part A, Chemical Engineering Research and Design. Volume 84(A4) (2006) pp 282-292.

l

U.4.3 Advanced Separation Processes

Advanced Separation Processes

Module designation	Advanced Separation Processes
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.3
Subtitle, if applicable	-
Courses, if applicable	- Advanced separation processes
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Belgacem CHANDOUL
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 21 hours of classroom course
Workload	Total 42hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Thermodynamics, Mass transfer, Mass & energy balance, Fluid mechanics, Applied Heat transfer.

Module objectives/intended	Objectives :
learning outcomes	 Present new and advanced separation processes whose degree of use on an industrial scale is expanding. Provide a qualitative view of the specific problems that arise nowadays in terms of separation Illustrate, using case studies, examples emphasizing the overall problem of process choice.
	Learning Outcomes:
	Students will be able to :
	 Extend knowledge of basic fluid separation processes to more complex systems commonly encountered in the chemical processing industry. Apply modern separation techniques in various applications Use the technological methods in problem solving in process plant Discuss the selection of processes and to demonstrate new trends in separation technology. Select a separation process according to a set of constraints (nature of the mixture to be separated, targeted performance, operating conditions) Use of ChemSep simulation tool to become familiar with various commercial chemical processes and the simulation techniques required for design and optimization of chemical process plants
Content	Chapter I : General Aspect
	 Introduction classification choice of separation method Energy requirements. Multi component transport and equilibria Chapter II : Separation and purification By adsorption By ion exchange Application to gases and liquids. Chapter II: Chromatographic processes: Simulated mobile beds. Chapter III : Electro-membrane processes Chapter IV: Gas permeation – Electrodialysis. Chapter VI: Reactive and catalytic distillation Concept Chapter VI : Foam fractionation process and application in waste water treatment Chapter VI: Supercritical fluids Separations Chapter VII: Modeling of seperation processes using ChemSep software.
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Written Final Exam (60%)

Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection ChemSep software
Reading list	-Henley E.J., J.D. Seader and D. K. Roper: Separation Process Principles, third ed., Wiley 2011 (SH).
	-Perry's Chemical Engineers' Handbook. New York: Mc Graw-Hill, 2007, 8th edition. Ch.12, Psychrometry, Evaporative Cooling and Solids Drying; Ch. 13, Distillation; Ch. 14, Equipment for Distillation, GasAbsorption, Phase Dispersion and Phase Separation.
	- Seader J.D., Ernet J. Henlay, and Keith, D., Separation Process Principles, Wiley (2010).
	-www.chemsep.org

ELECTIVE UNITS

U.4.4 Medicinal Chemistry (Elective Unit)

Fine Chemistry

Module designation	Medicinal Chemistry
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.4
Subtitle, if applicable	-
Courses, if applicable	- Fine Chemistry
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Pr. Ali SAMARAT
Language	French
Relation to curriculum	Professional module (Elective),
Type of teaching, contact hours	Lecture, 36 hours of classroom course 6 hours practical workshop/ Semester
Workload	Total 63 hours/semester (21 hours of Self-Study/semester)
Credit points	2.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Structural Organic Chemistry, Organic Chemistry & Catalysis, Physical chemistry. Material sciences.
Module objectives/intended learning outcomes	 Objectives : Reinforced the basic knowledge of fine chemistry to approach the field of the synthesis of more complex molecules by applying synthetic strategies. Differentiate a synthesis from retro-synthesis Perform multi-step synthesis Learning Outcomes: Students will be able to : Propose the mechanism of the Aldol reaction as known to form new C-C bond. Give the obtained product during an oxidation/reduction reaction from a given reagent and vice versa, Use Evan's chiral copula as a synthetic method to prepare a single enantiomer from achiral substrate, Synthetize aromatic nitrogenous heterocycles (Pyrroles and pyridines)

Content	Chapter I- General introduction:
	A. Definitions
	B. Examples of multi-step syntheses of active ingredients
	1. The Gleevec
	2. The Lipitor
	Chapter II- Aldol Condensation reaction:
	A. Enolate ions
	B. Keto-enolic balance
	C. Reactivity of enolates
	1. Alkylation
	2. Aldol condensation
	Exercise
	Chapter III- Oxidation and reduction reactions:
	A. Oxidation reactions
	1. General
	2. Reactions revealing unsaturation's
	a. Chromium oxidation
	b. Swern oxidation
	c. Dess-Martin oxidation
	Exercise
	3. Reactions involving the breaking of a C-C bond
	a. Case of a 1.2 Diol
	b. Ozonolysis
	c. With hot concentrated KMnO4
	d. With cold diluted KMnO4
	Exercise
	B. Reduction reactions
	1. Reduction of alkenes and alkynes
	a. Case of alkenes
	b. Case of alkynes
	2. Reduction of $C = O$
	a. Case of aldehydes and ketones
	b. Case of carboxylic acids and esters
	Exercise
	Tutorials
	Chapter IV. Asymmetric synthesis
	A. Introduction: Importance of asymmetric synthesis
	B. Evans Chiral Copulae
	1. Structure and use
	2. Preparation of Evans' chiral copula
	Exercise
	3. Mechanism of action
	4. Examples of electrophilic addition
	a. Alkylation
	b. Amination
	c. Bromination / Azidation
	5. Deprotection and obtaining a single enantiomer
	C. Examples of multi-step syntheses containing
	heterocyclic synthesis steps

	Chapter V. Heterocyclic synthesis
	A. Alkaloids and generalities
	B. Nitrogen heterocycles and nomenclature
	C. The best known methods for the synthesis of aromatic
	nitrogenous heterocycles
	1. Synthesis of Pyrroles
	a. Properties of the pyrrole cycle
	b. Paal-Knorr synthesis
	c. Hantzsch synthesis
	2. Synthesis of pyridines
	a. Pyridine ring properties
	b. Hantzsch synthesis
	Chapter VI: Organometallics
	1. Vinyllithien, synthesis (metal-metal exchange) and
	reactivity.
	2. Transmetallation with vinylstannane
	Exercise
	Tutorials
	6 hours of Practical workshop in Laboratory-Fine chemistry
	1. Synthesis of Paracetamol
	Objectives :
	-Synthesis of Paracetamol
	- Purification of the synthetic product,
	- Analysis of the synthetic product.
	2. Synthesis of wentergreen essence
	Objectives :
	-Reaction synthesis using 2 steps: acetylation of salicylic acid
	and exterification reaction of salicylic acid with methanol.
Study and examination	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written
requirements and forms of	Final Exam (50%)
examination	
Media employed	Course Material (Hard/ Soft copy) for classroom& Online
incula chipioyea	(Moodle ULT)
	Video projection
	Practical Workshop in Lab
Reading list	- Chimie organique avancée, Carey &Subdberg, DeBoeck
	Université Eds.
	- Chimie organique-Hétéroéléments et stratégies de synthèse.
	Nicolas Rabasso. De Boeck

U.4.4 Medicinal Chemistry (Elective Unit)

Pharmacology

Module designation	Medicinal Chemistry
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.4
Subtitle, if applicable	-
Courses, if applicable	- Pharmacology
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Ghazi TABKA
Language	French
Relation to curriculum	Professional module (Elective),
Type of teaching, contact hours	Lecture, 21 hours of classroom course/semester
Workload	Total 42hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Organic chemistry, thermodynamics, kinetics reactions.
Module objectives/intended learning outcomes	 Objectives : Understand the basics of medicinal chemistry, biophysical properties. Biological activity parameters Drug metabolism Acquire knowledge on the mechanisms of action of drugs Learning Outcomes: Distinguish between active ingredient and drug Distinguish between the different administration pathways Know the specifics of each phase of the ADME processes Knowing how to determine the various characteristic pharmacokinetic parameters in the case of a single or repeated administration Explain how a receptor works and quantify its binding to a ligand.

	L Conoral Acnost in pharmacology
Content	I. General Aspect in pharmacology
	1. Generalities
	2. Medication
	History
	Definition
	Composition
	Denomination
	Generic drugs
	3. Phases of drug design
	Routes of administration and dosage forms
	Pathway of administration
	 Dosage forms and examples
	II. Pharmacokinetics
	1. Definition and comparison of pharmacokinetics /
	Pharmacodynamics
	2. Descriptive pharmacokinetics: ADME processes
	A. Absorption
	Influence of the route of administration
	Mechanisms of absorption
	Passive broadcast
	Filtration
	Easy passive dissemination
	Active transportation
	Factors influencing absorption
	 Concept of bioavailability (relative and absolute)
	 Distrubution
	B. Distrubution
	Parameters influencing distribution
	 Protein binding and balance between free form and
	bound form
	 Concept of volume of distribution Dv C. Metabolization
	Phase I and II reactions / Introduction of the pro-drug notion
	notion
	Cytochromes P450
	D. Elimination
	III. Quantitative pharmacokinetics: determination of
	pharmacokinetic parameters
	1. Case of IV administration
	2. Case of extravascular administration
Study and examination	Written Mid-term Exam (40%)+ Written Final Exam (60%)
requirements and forms of	
examination	
Madia amployed	Course Material (Hard/ Soft copy) for classroom & Online
Media employed	(Moodle ULT)
	Video projection

l

Reading list	-Pharmacologie (2ème édition), M. Moulin et A. Coquerel. MASSON.
	-Advanced Practical Medicinal Chemistry, Ashutosh Kar, New Age International Ltd. (2004).
	-Foye's Principles of Medicinal Chemistry by David A. Williams, Thomas L. Lemke, William O. Foye (2008), Kluwer publication.

ELECTIVE UNIT 2

U.4.4 Material Sciences (Elective Unit)

Physical Chemistry of Polymers

Material Sciences
2 nd year of chemical engineering
U.4.4
-
- Physical Chemistry of Polymers
-Semester 2 (S4)
Dr Khalil ZAGHDOUDI
Pr. Mohamed JAZIRI
French
Professional module (Elective),
Lecture, 36 hours of classroom course/semester 6 hours practical workshop/ Semester
Total 63hours/semester (21 hours of Self-Study/semester)
2.5 credits
 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Polymers synthesis, Structural organic chemistry, Organic chemistry & catalysis, introduction to material sciences, thermodynamics

Module objectives/intended learning outcomes	 Objectives : 1. Introduce the physico-chemistry of polymers in solution, at interfaces and in emulsion 2. Know Conformations & Thermodynamics of polymer solutions 3. Understand Dynamics of entangled polymers 4. Understand Dynamics of unentangled polymers Learning Outcomes:
	 Students will be able to : Understand Thermal Properties of polymers Carry out Morphological characterization Know Mechanical Properties Acquire knowledge in characterization and analysis of the behaviour of polymers used in formulated products Understand the link between structural characteristics and product behavior, particularly at interfaces

Content	 Chapter I. Diversity of polymers and their properties Notions of mechanics useful for studying polymers. Rubber elasticity (thermodynamic approach). Conformation of a mass polymer chain Static mechanical behaviour of networks Chapter II. Properties of polymers in solution Conformation of a polymer chain in solution Viscosity of polymer solutions Measurement of molecular masses
	 Chapter III. Bulk polymer properties Glass transition Viscoelasticity Polymer crystallization Miscibility, compatibility of polymers and diluents Applications of the concepts acquired to the specific case of the formulation of a tire tread.
	 Chapter IV. Elastomers: formulation, rheology and processing techniques 1- The final product in terms of material properties. 2- Presentation of the different types of elastomers and fillers, 3- Origin of the reinforcement 4- Role of the different ingredients, concepts of formulation of different families of rubber mixtures.
	 Chapter V. Rheology of elastomers 1. Different types of devices and methods of characterization: Advantages, Limitations Selection parameters with respect to the various families of problems encountered. 2. Different processing techniques: Mixing,
	 Calendaring, Extrusion, Assembly, Molding-baking, Relationship between process selection and materials to be transformed. Practical workshop-Physical Chemistry of Polymers <u>Plastics - Analysis of a plastic material by FTIR and</u> <u>differential scanning Calorimetry</u>
36	<i>Objectives :</i> This lab prescribes a method for the thermal analysis of polymers such as thermoplastics and thermosets, including molding materials and Composites, using Differential Scanning Calorimetry (DSC). Differential scanning Calorimetry can determine different properties of polymers.

	2. <u>Rheology</u> Objectives: Rheology is the study of the deformation and flow of matter under the effect of applied stress. In this practical work, we propose to study the rheological characteristics of several products (cosmetics, food and paint). Measuring the viscosity of a fluid is part of rheology, which is the science of the flow of matter.
Study and examination requirements and forms of examination	Written Mid-term Exam (25%) + Practical Exam (25%)+ Written Final Exam (50%)
Media employed	Course Material (Hard/ Soft copy) for classroom& Online (Moodle ULT) Video projection Practical Workshop in Lab
Reading list	 -Physical Chemistry of Polymers.A Conceptual Introduction. Sebastian Seiffert. De Gruyter 2020. -Surface Chemistry of Surfactants and Polymers.Bengt Kronberg, Krister Holmberg, Björn Lindman.ISBN:9781119961246.(2014). Matières plastiques - Propriétés, mise en forme et applications industrielles des matériaux polymers,MarcCarrega, Vincent Verney, 3e edition, Dunod,, 2012. -Polymer Extrusion, Pierre G. Lafleur Bruno Vergnes, Wiley, First published: 8 May 2014

U.4.4 Material Sciences (Elective Unit)

Micro- and nanostructured products

Module designation	Material Sciences
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.4
Subtitle, if applicable	-
Courses, if applicable	- Micro- and nanostructured products
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Malek ATYAOUI
Language	French
Relation to curriculum	Professional module (Elective),
Type of teaching, contact hours	Lecture, 21 hours of classroom course/semester
Workload	Total 42hours/semester (21 hours of Self-Study/semester)
Credit points	1.5 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Organic chemistry, thermodynamics, kinetics reactions. Physical Chemistry
Module objectives/intended learning outcomes	 Objectives : Discover micro and nano structured products (emulsion, colloidal dispersion) Acquire knowledge in characterization and analysis of the behavior of molecules used in formulated products (mainly surfactants) Understand the link between structural characteristics and product behavior, particularly at interfaces
	Learning Outcomes:
	 Students will be able to : Analyze the behavior of molecules used in formulated products (surfactants) Choose and justify the choice of a compound (surfactant) in the formula of a product Make the link between the structural and behavioral characteristics of products, particularly at interfaces Implement dispersions about specific examples (emulsion, colloidal suspensions).

Content	I. Physico-chemistry and formulation of multiphase fluid
	systems
	1. Physico-chemistry of interfaces
	Classes, specificity and behavior of surfactants in solution
	3. Micellization, desorption at interfaces, liquid crystal
	phases
	 Formulation of emulsions and phase inversion
	5. Spreading dynamics
	6. Formulation and manufacturing of foams
	II. Processes for dispersed fluid systems
	1. Mechanically assisted emulsification, the devices
	Temporal phenomena modeling test; examples of semi- empirical modeling
	 Micro-emulsification, nucleation and growth: basic principles and mechanisms
	 Kinetics of the growth of the new phase; coupling
	between different transport mechanismsand transfer
	and thermodynamic equilibrium at the interface;
	competition between hydrodynamics and
	dissemination; modelling, analytical approach and
	numerical scheme
	5. Atomization, drying: characterization of dispersions and
	atomization devices; mechanisms and atomization
	characteristics
	III. Processes for dispersed solid systems
	1. Characterization of dispersed systems: particle size,
	energy and surface potentials
	2. Physico-chemical properties of dispersed systems:
	diffusion, Brownian motion, filmification Nanoparticle
	manufacturing technologies: sol-gel processes, gas phase
	condensation, atomization-pyrolysis 3. Microparticle manufacturing technologies:
	3. Microparticle manufacturing technologies: emulsification-evaporation, atomization-drying
	4. Stabilization of dispersed systems: DLVO theory and
	applications
Study and examination	Written Mid-term Exam (40%)+ Written Final Exam (60%)
requirements and forms of	
examination	
Madia amployed	Course Material (Hard/ Soft copy) for classroom & Online
Media employed	(Moodle ULT)
	Video projection
	Practical Workshop in Lab
Reading list	-Physical chemistry of surfaces, A.W. Adamson, John Wiley and Sons
	-R. C. Pasquali ; M.P. Taurozzi ; C. Bregni. International Journal of Pharmaceutics, 2008, Vol. 356, 44-51.
	 A. Boudendouna ; «Méthodologie de la formulation d'une forme orale solide à libération prolongée », Thèse de doctorat de l'université de Toulouse, 2010.

U.4.5Languages & Management

English (TEOIC) II

Module designation	Languages & Management
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.5
Subtitle, if applicable	-
Courses, if applicable	- English (TOEIC) II
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Mr. Noureddine ZAALOUNI & Miss Nadia ZARDI
Language	English
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 42 hours of classroom course/semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Upper intermediate level in both listening and reading skills.

Madula chiectives (intended	Objectives:
Module objectives/intended	1. Prepare students to take TOEIC test by providing related
learning outcomes	necessary linguistic knowledge.
	2. Focus is put on how to approach the different parts of
	test items and to develop test taking skills, in order to
	reach the highest score possible.
	Learning Outcomes:
	Students will be able to :
	Competencies:
	General Competencies
	1. Reach the highest score possible
	 Develop at most his/her Listening and reading skills.
	Specific Competencies
	1. Recognize the different parts of TOEIC.
	2. Develop tactics and strategies appropriate to each type
	of activity, (ex: skimming and scanning).
	 Distinguish tasks to be performed in every activity. Establish a proper page to follow throughout the aver
	4. Establish a proper pace to follow throughout the exam.
	5. Manage allocated time.
	6. Follow steps
Content	Unit 4 Retailing
	Vocabulary builder:
	 Shopping, stores, products, services.
	 Starting a new business Venture.
	Grammar check:
	 Comparatives and superlatives
	 Tag questions
	Unit 5 Industry
	Vocabulary builder:
	 Production, construction, automation.
	 Factory tour, Industrial problems
	Grammar check:
	Active/ passive form
	 Definite/ indefinite articles
	Unit 6 Trade
	Vocabulary builder:
	 Marketing, shipping, import and export
	 Financial market, stock exchange, auction house,
	international port.
	Grammar check:
	Cause and effect
	Future forms
	 Phrasal verbs (part 1)
	Unit 7 Money
	Vocabulary builder:
	Banking, budgets, expenditure
	Investment, personal finance
	Grammar check:
	Modalsverbs
	 Phrasalverbs (part 2)
Study and examination	Written Mid-term Exam (40%)+ Written Final Exam (60%)
non-vinancesta and formers of	Students will sit for a two hour paper based TOEIC test, which
requirements and forms of examination	will be scheduled a week ahead.

ľ

Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT)
	· · · · ·
	Exercises, videos, recording speech, computer,
Reading list	1- Market leader, David cotton, David Falvey , Simon Ken;
	FINANCIAL TIMES (Pearson Longman)
	2- Tactics for TOEIC [®] Listening and Reading Test: Grant Trew,
	OUP Oxford, 2007.
	3- Target Score Student's: A Communicative Course for TOEIC®
	Test Preparation, Charles Talcott & Graham Tullis, Cambridge
	University Press, 2007
	4- Understanding and Using English Grammar, Betty Schrampfer
	Azar; Prentice Hall Regents;
	YouTube Videos

U.4.5Languages & Management

Business Management

Module designation	Languages & Management
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.5
Subtitle, if applicable	-
Courses, if applicable	- Business Management
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Miss SOUKEINA TOUITI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 21 hours of Seminar/Project
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Basic knowledge's in economy, project management,
Module objectives/intended learning outcomes	 Objectives : 1. Define management and corporate culture 2. Have a professional interpersonal skill, 3. Understand financial and accounting issues
	Learning Outcomes:
	 Students will be able to : Manage a structure and control the economic, legal and financial aspects to support or even increase its development, and to anticipate the tax and social risks linked to their growth. Implement resources to ensure the start of the business creation and management project or takeover of the business. Implement the adopted strategy and react to unforeseen events. Ensure management control, how to analyze, methods and means to improve the performance of a company Evaluate the feasibility and viability of a business creation project

Content	Chapter 1: The Enterprise System
Content	- Presentation of the company
	- The company, a system open to its environment
	- Business organization
	- The company and its management
	Chapter 2: Analysis of the financial situation of the
	company from the financial balance sheet
	- Understand the balance sheet
	- Move from the balance sheet to the financial balance sheet
	- Apply the financial analysis approach
	- Long-term / short-term liabilities
	- Measure financial balances
	- Define the concepts of Working Capital (FR), Working
	Capital Requirement (WCR), Net Cash (TN)
	- Identify the main ratios of structure, WCR and liquidity
	- Carry out the financial diagnosis of a company
	Application: calculation and interpretation of the balance of the
	functional balance sheet (FR, BFR and TN) and the main ratios
	and realization of the financial diagnosis of a company.
	Chapter 3: Legal study of the company
	-Distinguish between structure and activity
	- Choose the appropriate legal structure
	-Meet the main selection criteria
	- Summary table of the main legal structures
	- VAT accounting
	Chapter 4: Human Resource Management
	- Introduction to HR management
	- Recruitment
	- Skills and career management
	- Compensation
	- Training
	Chapter 5: the organization of production in companies
	- The production
	- Procurement and inventory management
	- Selective management of supplies and stocks
	- Main inventory management tools
	Application: Project summary work
	- A work of synthesis in the form of a workshop which
	promotes the transposition in business of the main tools of
	strategic analysis.
	- Know the fundamentals of management and business
	creation.
	- Analyze your idea and transform it into a project.
	- Evaluate the possible risks of his project.
	Project study workshop
	- Define: its strategy; her goals; its targets.
	- Know: your environment; the competitors already present;
	the possible sources of a market study.

l

	 Carry out a SWOT diagnosis. Define your action plan at the start of the activity. Choose the legal framework, the tax and social regime of the company. Analyze the financial balance of the company and simulate the impact of economic decisions. Build the financial business plan
Study and examination requirements and forms of examination	Format: Continuous Control, Oral Presentation Project (100%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection Practices & oral presentation
Reading list	Books and handouts, websites,

l

U.4.5Languages& Management

Lean Management	
Module designation	Languages & Management
Module level, if applicable	3 rd year of chemical engineering
Code, if applicable	U. 4.5
Subtitle, if applicable	-
Courses, if applicable	- Lean Management
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Amine OULHA
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	Lecture, 21 hours of classroom course/semester 21 hours of project workshop/semester
Workload	Total 77 hours/semester (35 hours of Self-Study/semester)
Credit points	3 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	No recommended prerequisites
Module objectives/intended learning outcomes	 Objectives: 1. Understand the lean management concept, 2. Understand the 6 sigma concept, 3. acquire the different tools of the lean management,
	Learning Outcomes:
	Students will be able to :
	 Work through all principles and aspects of the Lean Manufacturing methodology on actual projects Effectively communicate with key stakeholders to evaluate outcomes from applying Lean Apply the different tools of the lean management, Reduce manufacturing times and increase production flexibility.

Lean Management

Content	Part I : 21 hours of project workshop/semester
	Chapter I The Foundations of Lean Thinking
	1. Understand the state of mind of Lean management.
	2. Difference between Lean manufacturing and Lean
	Management
	3. Lean and continuous improvement initiatives.
	4. The principle of added value for the customer.
	5. The notion of "waste".
	6. The process model.
	Chapter II How to deploy the Lean management approach
	1. The deployment plan.
	2. Performance indicators.
	3. Training.
	4. Conduct of the group at work.
	Chapter III The foundations of Lean Manufacturing
	1. Introduction
	2. Origins and history of lean
	3. Concepts and tools
	o 5S and Visual Management
	o Autonomous Production Unit
	o Jidoka
	o Kaizen and PDCA
	o PokaYoke (Anti-Errors Systems)
	o Quick Change of Tools (SMED)
	o Pulled Flow (just in time)
	o Standardized work
	o Total Productive Maintenance (TPM)
	o Value stream
	o 6 sigma
	Chapter IV 6 Sigma Method
	1. Notions of 6 sigma
	2. Study of compliance
	3. DMAIC process
	4. Control cards Chapter V 5S Method
	1. Origin of 5S
	 Origin of 53 Procedure for carrying out a 5S project
	3. Definition of 5S
	4. The stages of 5S
	5. Application examples
	6. 5S projects
	Chapter VI Establishment of factories
	1. Production typology
	2. The different production organizations
	3. Design of a modern production unit
	4. Analysismethods
	Chapter VII Value Stream Mapping
	1. Principles of VSM
	2. The stages of the current state
	3. Current state drawing in the field
	4. Complete data box and information flow
	5. Identification of areas for improvement
	6. Calculation of flow time and VA time

	Part II: Project Workshop (21 hours of Workshop Project/semester)
	Students are divided into groups of 4 students. A project will be assigned to students group early in the semester. The students will be asked to develop a project plan and will work on project throughout the course. Students groups will work on a given project from the list below: Project Topic : Proposal 1: Application of LEAN tools as part of the optimization
	of the logistics flow of Thermostats in Industry. Proposal 2 :
	Implementation of a Kaizen approach and optimization of yarn consumption.
	Improvement of the TRS performance indicator in a given plant. Proposal 3 :
	Implementation of a lean six six sigma project on the production line of a detergent product
	Proposal 4 :
	Measurement and improvement of performance, monitoring of indicators and corrective actions of a production line of a chemical product.
	Proposal 5 :
	Implementation of the WCM (world class manufacturing) methodology for continuous improvement in the production line
Study and examination requirements and forms of examination	Format: Written Mid-term Exam (40%) + Oral presentation Project (60%)
Media employed	Course Material (Hard/ Soft copy) for classroom & Online (Moodle ULT) Video projection
Reading list	-Lean Management: Outils, méthodes, retours d'expériences, questions/, Christian Hoffman, 2012
	-Système Lean: Penser l'entreprise au plus juste, James P. Womack, Daniel T. Jones,
	-Les basiques du Lean Manufacturing: Dans les PMI et ateliers technologiques, Pierre Bédry, 2009

U.4.6Projects

Annual Project (Conception/Simulation/Design process)

Module designation	PROJECTS
Module level, if applicable	2 nd year of chemical engineering
Code, if applicable	U.4.6
Subtitle, if applicable	-
Courses, if applicable	- Annual Project
Semester (s) in which the module is taught	-Semester 2 (S4)
Person responsible for the module	Dr Khalil ZAGHDOUDI
Lecturer	Phd. Khalil ZAGHDOUDI
Language	French
Relation to curriculum	Professional module (compulsory),
Type of teaching, contact hours	21 hours of Practical Work in Lab/semester
Workload	Total 51 hours/semester (30 hours of Self-Study/semester)
Credit points	2 credits
Requirements according to the examination regulations	 Minimum attendance rate: 80% of the total contact hours >20 % of nonattendance = elimination for exams
Recommended prerequisites	Fundamentals taught during the 3 previous semesters, Mini project, Project management,

Module objectives/intended	Objectives:
learning outcomes	 To familiarize future engineers with industrial analysing methods of a common problem and drafting a project.
	2. Mobilize existing skills in chemical engineering in the
	field of specialty chemistry
	3. Practise some intra and entrepreneurial skills
	4. Develop global thinking and creative thinking and apply
	them by creating an innovative process / improving an
	existing process
	Learning Outcomes:
	At the end of the courses Students are expected to be able to : 1. Propose an improvement of an existing industrial process
	2. Propose an improvement of existing analysis or
	control method in the fields of chemical engineering.
	3. Mobilize the knowledge and skills required to design
	an innovative process from idea to proof of concept
	and proof of theoretical feasibility
	 Structure and optimize the creativity of a project team
	5. Develop and use knowledge and skills in project
	management dedicated to the design of innovative
	projects: plan and lead a simple project to design an
	innovative chemical product/or process
Content	Students are divided into groups of 3 to 4 students. They are
	confronted with real professional and managerial situations,.
	Students groups will work on a given project during the semester
	in order to carry on an innovative process from the beginning to
	the end (concept/simulate/design). Teaching methods :
	- Team working
	- Case study
	- Experiential learning
	Project WorkingSteps:
	1. Search for documentation sources - Reading and
	interpretation of scientific articles
	2. Writing
	3. Use of process simulation software
	4. Team work awareness
	5. Solve industrial problems through experiments
	6. Propose and find scientific solutions of real industrial cases
	7. Concept
	8. Simulate
	9. Design Process
	10. Written Technical report/ technical sheet/ 11. Poster
Study and examination	Format: Continuous Control, Oral Presentation Project (100%)
requirements and forms of	
examination	
Media employed	Video projector, Remote supervision (email, video conferences)

Reading list	Books and handouts, websites, scientific papers as references are provided to each student by his Supervisor depending on the project topic.